Evidence of ecological niche shift in Rhododendron ponticum (L.) in Britain: Hybridization as a possible cause of rapid niche expansion

. 2020 Feb ; 10 (4) : 2040-2050. [epub] 20200211

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32128136

Biological invasions threaten global biodiversity and natural resources. Anticipating future invasions is central to strategies for combating the spread of invasive species. Ecological niche models are thus increasingly used to predict potential distribution of invasive species. In this study, we compare ecological niches of Rhododendron ponticum in its native (Iberian Peninsula) and invasive (Britain) ranges. Here, we test the conservation of ecological niche between invasive and native populations of R. ponticum using principal component analysis, niche dynamics analysis, and MaxEnt-based reciprocal niche modeling. We show that niche overlap between native and invasive populations is very low, leading us to the conclusion that the two niches are not equivalent and are dissimilar. We conclude that R. ponticum occupies novel environmental conditions in Britain. However, the evidence of niche shift presented in this study should be treated with caution because of nonanalogue climatic conditions between native and invasive ranges and a small population size in the native range. We then frame our results in the context of contradicting genetic evidence on possible hybridization of this invasive species in Britain. We argue that the existing contradictory studies on whether hybridization caused niche shift in R. ponticum are not sufficient to prove or disprove this hypothesis. However, we present a series of theoretical arguments which indicate that hybridization is a likely cause of the observed niche expansion of R. ponticum in Britain.

Zobrazit více v PubMed

Allouche, O. , Tsoar, A. , & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 2006(45), 1223–1232. 10.1111/j.1365-2664.2006.01214.x DOI

Arrigo, N. , De La Harpe, M. , Litsios, G. , Zozomová‐Lihová, J. , Španiel, S. , Marhold, K. , … Alvarez, N. (2016). Is hybridization driving the evolution of climatic niche in Alyssum montanum. American Journal of Botany, 103, 1348–1357. 10.3732/ajb.1500368 PubMed DOI

Banerjee, A. K. , Mukherjee, A. , & Dewanji, A. (2017). Potential distribution of Mikania micrantha Kunth in India − evidence of climatic niche and biome shifts. Flora, 234, 215–223. 10.1016/j.flora.2017.08.001 DOI

Barrett, R. D. H. , & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23, 38–44. 10.1016/j.tree.2007.09.008 PubMed DOI

Blaine Marchant, D. , Soltis, D. E. , & Soltis, P. S. (2016). Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytologist, 212, 708–718. 10.1111/nph.14069 PubMed DOI

Blossey, B. , & Notzold, R. (1995) Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. Journal of Ecology, 83(5), 887–889.

Bosso, L. , De Conno, C. , & Russo, D. (2017). Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environmental Management, 60, 304–313. 10.1007/s00267-017-0882-8 PubMed DOI

Boyce, M. S. , Vernier, P. R. , Nielsen, S. E. , & Schmiegelow, F. K. A. (2002). Evaluating resource selection functions. Ecological Modelling, 157, 281–300. 10.1016/S0304-3800(02)00200-4 DOI

Broennimann, O. , Fitzpatrick, M. C. , Pearman, P. B. , Petitpierre, B. , Pellissier, L. , Yoccoz, N. G. , … Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497. 10.1111/j.1466-8238.2011.00698.x DOI

Broennimann, O. , Treier, U. A. , Müller‐Schärer, H. , Thuiller, W. , Peterson, A. T. , & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709. 10.1111/j.1461-0248.2007.01060.x PubMed DOI

Cross, J. R. . (1981). The establishment of Rhododendron ponticum in the Killarney Oakwoods, S. W. Ireland. The Journal of Ecology, 69(3), 807–824. 10.2307/2259638 DOI

Cunze, S. , Kochmann, J. , Koch, L. K. , & Klimpel, S. (2018). Niche conservatism of Aedes albopictus and Aedes aegypti ‐ Two mosquito species with different invasion histories. Scientific Reports, 8, 1–10. 10.1038/s41598-018-26092-2 PubMed DOI PMC

Currat, M. , Ruedi, M. , Petit, R. J. , & Excoffier, L. (2008). The hidden side of invasions: Massive introgression by local genes. Evolution, 62, 1908–1920. 10.1111/j.1558-5646.2008.00413.x PubMed DOI

Dehnen‐Schmutz, K. , & Williamson, M. (2006). Rhododendron ponticum in Britain and Ireland: Social, economic and ecological factors in its successful invasion. Environment and History, 12, 325–350. 10.3197/096734006778226355 DOI

Di Cola, V. , Broennimann, O. , Petitpierre, B. , Breiner, F. T. , D’Amen, M. , Randin, C. , Guisan, A. (2017). ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774–787. 10.1111/ecog.02671 DOI

Dietz, H. , & Edwards, P. J. (2006). Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology, 87, 1359–1367. 10.1890/0012-9658(2006)87[1359:RTCPCD]2.0.CO;2 PubMed DOI

Dormann, C. F. , Elith, J. , Bacher, S. , Buchmann, C. , Carl, G. , Carré, G. , … Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 027–046. 10.1111/j.1600-0587.2012.07348.x DOI

Drake, J. M. (2006). Heterosis, the catapult effect and establishment success of a colonizing bird. Biology Letters, 2, 304–307. 10.1098/rsbl.2006.0459 PubMed DOI PMC

Early, R. , & Sax, D. F. (2014). Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecology and Biogeography, 23, 1356–1365. 10.1111/geb.12208 DOI

Elith, J. , Graham, C. H. , Anderson, R. P. , Dudik, M. , Ferrier, S. , Guisan, A. , … Li, J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. 10.1111/j.2006.0906-7590.04596.x DOI

Ellstrand, N. C. , & Schierenbeck, K. A. (2000). Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences, 41, 23–24. 10.1007/BF02942850 PubMed DOI PMC

Erfmeier, A. , & Bruelheide, H. (2004). Comparison of native and invasive Rhododendron ponticum populations: Growth, reproduction and morphology under field conditions. Flora ‐ Morphology, Distribution, Functional Ecology of Plants, 199, 120–133. 10.1078/0367-2530-00141 DOI

Erfmeier, A. , Tsaliki, M. , Roß, C. A. , & Bruelheide, H. (2011). Genetic and phenotypic differentiation between invasive and native Rhododendron (Ericaceae) taxa and the role of hybridization. Ecology and Evolution, 1, 392–407. 10.1002/ece3.38 PubMed DOI PMC

Fick, S. E. , & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. 10.1002/joc.5086 DOI

Fitzpatrick, M. C. , Weltzin, J. F. , Sanders, N. J. , & Dunn, R. R. (2007). The biogeography of prediction error: Why does the introduced range of the fire ant over‐predict its native range? Global Ecology and Biogeography, 16, 24–33. 10.1111/j.1466-8238.2006.00258.x DOI

Gallagher, R. V. , Beaumont, L. J. , Hughes, L. , & Leishman, M. R. (2010). Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology, 98, 790–799. 10.1111/j.1365-2745.2010.01677.x DOI

Graham, C. H. , Ron, S. R. , Santos, J. C. , Schneider, C. J. , & Moritz, C. (2004). Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution, 58, 1781–1793. 10.1111/j.0014-3820.2004.tb00461.x PubMed DOI

Guisan, A. , Petitpierre, B. , Broennimann, O. , Daehler, C. , & Kueffer, C. (2014). Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution, 29, 260–269. 10.1016/j.tree.2014.02.009 PubMed DOI

Hedrick, P. W. (2013). Adaptive introgression in animals: Examples and comparison to new mutation and standing variation as sources of adaptive variation. Molecular Ecology, 22, 4606–4618. 10.1111/mec.12415 PubMed DOI

Hirzel, A. H. , Le Lay, G. , Helfer, V. , Randin, C. , & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199, 142–152. 10.1016/j.ecolmodel.2006.05.017 DOI

Huntley, B. , Bartlein, P. J. , & Prentice, I. C. (1989). Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. Journal of Biogeography, 16, 551 10.2307/2845210 DOI

Jackson, P. (2008). Rhododendron in Snowdonia and a strategy for its control. Snowdownia Natl Park Auth.

Jackson, S. T. , & Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology., 26, 194–220. 10.1017/S0094837300026932 DOI

Jiménez‐Valverde, A. , Peterson, A. T. , Soberón, J. , Overton, J. M. , Aragón, P. , & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13, 2785–2797. 10.1007/s10530-011-9963-4 DOI

Klironomos, J. N. (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67–70. 10.1038/417067a PubMed DOI

Lauzeral, C. , Leprieur, F. , Beauchard, O. , Duron, Q. , Oberdorff, T. , & Brosse, S. (2011). Identifying climatic niche shifts using coarse‐grained occurrence data: A test with non‐native freshwater fish. Global Ecology and Biogeography, 20, 407–414. 10.1111/j.1466-8238.2010.00611.x DOI

Lavergne, S. , & Molofsky, J. (2007). Increased genetic variation and evolutionary potential drive the success of an invasive grass Proceedings of the National Academy of Sciences USA., 104, 3883–3888. 10.1073/pnas.0607324104 PubMed DOI PMC

Manzoor, S. A. , Griffiths, G. , Iizuka, K. , & Lukac, L. M. (2018). Cover and climate change may limit invasiveness of Rhododendron ponticum in wales. Frontiers in Plant Science, 9, 664 10.3389/fpls.2018.00664 PubMed DOI PMC

Manzoor, S. A. , Griffiths, G. , & Lukac, M. (2018). Species distribution model transferability and model grain size – finer may not always be better. Scientific Reports, 8(1), 1–9. 10.1038/s41598-018-25437-1 PubMed DOI PMC

Melo‐Ferreira, J. , Boursot, P. , Randi, E. , Kryukov, A. , Suchentrunk, F. , Ferrand, N. , & Alves, P. C. (2007). The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: Expansion and retreat with hybridization in the Iberian Peninsula. Molecular Ecology, 16, 605–618. 10.1111/j.1365-294X.2006.03166.x PubMed DOI

Milne, R. I. , & Abbott, R. J. (2000). Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Molecular Ecology, 9, 541–556. 10.1046/j.1365-294X.2000.00906.x PubMed DOI

Minardo, J. D. , Heger, J. J. , Miles, W. M. , Zipes, D. P. , & Prystowsky, E. N. (1988). Clinical characteristics of patients with ventricular fibrillation during antiarrhythmic drug therapy. New England Journal of Medicine, 319, 257–262. 10.1056/NEJM198808043190501 PubMed DOI

Molina‐Henao, Y. F. , & Hopkins, R. (2019). Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa . American Journal of Botany, 106, 61–70. 10.1002/ajb2.1212 PubMed DOI

Moreno‐Amat, E. , Mateo, R. G. , Nieto‐Lugilde, D. , Morueta‐Holme, N. , Svenning, J. –C. , & García‐Amorena, I. (2015). Impact of model complexity on cross‐temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecological Modelling, 312, 308–317. 10.1016/j.ecolmodel.2015.05.035 DOI

Mukherjee, A. , Williams, D. A. , Wheeler, G. S. , Cuda, J. P. , Pal, S. , & Overholt, W. A. (2012). Brazilian peppertree (Schinus terebinthifolius) in Florida and South America: Evidence of a possible niche shift driven by hybridization. Biological Invasions, 14, 1415–1430. 10.1007/s10530-011-0168-7 DOI

Muscarella, R. , Galante, P. J. , Soley‐Guardia, M. , Boria, R. A. , Kass, J. M. , Uriarte, M. , & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5, 1198–1205. 10.1111/2041-210X.12261 DOI

Nasiri, V. , Darvishsefat, A. A. , Rafiee, R. , Shirvany, A. , & Hemat, M. A. (2018). Land use change modeling through an integrated Multi‐Layer Perceptron Neural Network and Markov Chain analysis (case study: Arasbaran region, Iran). Journal of Forest Research, 30(3), 943–957. 10.1007/s11676-018-0659-9 DOI

Obiakara, M. C. , & Fourcade, Y. (2018). Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoS ONE, 13, 1–18. 10.1371/journal.pone.0202421 PubMed DOI PMC

Olson, D. M. , Dinerstein, E. , Wikramanayake, E. D. , Burgess, N. D. , Powell, G. V. N. , Underwood, E. C. , … Loucks, C. J. (2001). Terrestrial Ecoregions of the World: A new map of life on earth. BioScience, 51, 933 10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2 DOI

Orozco‐Terwengel, P. , Andreone, F. , Louis, E. , & Vences, M. (2013). Mitochondrial introgressive hybridization following a demographic expansion in the tomato frogs of Madagascar, genus D yscophus. Molecular Ecology, 22, 6074–6090. 10.1111/mec.12558 PubMed DOI

Orr, H. A. , & Unckless, R. L. (2008). Population extinction and the genetics of adaptation. American Naturalist, 172, 160–169. 10.1086/589460 PubMed DOI

Parisod, C. , & Broennimann, O. (2016). Towards unified hypotheses of the impact of polyploidy on ecological niches. New Phytologist, 212, 540–542. 10.1111/nph.14133 PubMed DOI

Pearman, P. B. , Guisan, A. , Broennimann, O. , & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23, 149–158. 10.1016/j.tree.2007.11.005 PubMed DOI

Petitpierre, B. , Kueffer, C. , Broennimann, O. , Randin, C. , Daehler, C. , & Guisan, A. (2012). Climatic Niche shifts are rare among terrestrial plant invaders. Science, 335(6074), 1344–1348. 10.1126/science.1215933 PubMed DOI

Pfennig, K. S. , Kelly, A. L. , & Pierce, A. A. (2016). Hybridization as a facilitator of species range expansion. Proceedings of the Royal Society B: Biological Sciences, 283(1839), 20161329 10.1098/rspb.2016.1329 PubMed DOI PMC

Phillips, P. C. (1996). Waiting for a compensatory mutation: Phase zero of the shifting‐balance process. Genetical Research, 67, 271–283. 10.1017/s0016672300033759 PubMed DOI

Phillips, S. J. , Dudik, M. , & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. Proceedings of the Twenty‐first International Conference on Machine Learning, 655–662.

Rödder, D. , & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915–927. 10.1111/j.1466-8238.2011.00659.x DOI

Sales, L. P. , Ribeiro, B. R. , Hayward, M. W. , Paglia, A. , Passamani, M. , & Loyola, R. (2017). Niche conservatism and the invasive potential of the wild boar. Journal of Animal Ecology, 86, 1214–1223. 10.1111/1365-2656.12721 PubMed DOI

Schoener, T. W. (1968). The anolis lizards of bimini: Resource partitioning in a complex fauna. Ecology, 49, 704–726.

Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51(3), 408–418. 10.2307/1935376 DOI

Sexton, J. P. , McIntyre, P. J. , Angert, A. L. , & Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology Evolution and Systematics, 40, 415–436. 10.1146/annurev.ecolsys.110308.120317 DOI

Sheth, S. N. , & Angert, A. L. (2014). The evolution of environmental tolerance and range size: A comparison of geographically restricted and widespread Mimulus. Evolution, 68, 2917–2931. 10.1111/evo.12494 PubMed DOI

Stephenson, C. M. , MacKenzie, M. L. , Edwards, C. , & Travis, J. M. J. (2006). Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecological Modelling, 193, 747–758. 10.1016/j.ecolmodel.2005.09.007 DOI

Strubbe, D. , Beauchard, O. , & Matthysen, E. (2015). Niche conservatism among non‐native vertebrates in Europe and North America. Ecography, 38, 321–329. 10.1111/ecog.00632 DOI

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293. 10.1126/science.3287615 PubMed DOI

Syfert, M. M. , Smith, M. J. , & Coomes, D. A. (2013). The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE, 8(2), e55158 10.1371/journal.pone.0055158 PubMed DOI PMC

Thapa, S. , Chitale, V. , Rijal, S. J. , Bisht, N. , & Shrestha, B. B. (2018). Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS ONE, 13, 1–16. 10.1371/journal.pone.0195752 PubMed DOI PMC

Thornton, D. H. , & Murray, D. L. (2014). Influence of hybridization on niche shifts in expanding coyote populations. Diversity and Distributions, 20, 1355–1364. 10.1111/ddi.12253 DOI

Tiedeken, E. J. , & Stout, J. C. (2015). Insect‐flower interaction network structure is resilient to a temporary pulse of floral resources from invasive Rhododendron ponticum . PLoS ONE, 10, 1–19. 10.1371/journal.pone.0119733 PubMed DOI PMC

Tingley, R. , Vallinoto, M. , Sequeira, F. , & Kearney, M. R. (2014). Realized niche shift during a global biological invasion. Proceedings of the National Academy of Sciences, 111, 10233–10238. 10.1073/pnas.1405766111 PubMed DOI PMC

Warren, D. L. , Glor, R. E. , & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62, 2868–2883. 10.1111/j.1558-5646.2008.00482.x PubMed DOI

Wisz, M. S. , Hijmans, R. J. , Li, J. , Peterson, A. T. , Graham, C. H. , Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773. 10.1111/j.1472-4642.2008.00482.x DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...