Species distribution model transferability and model grain size - finer may not always be better
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29740002
PubMed Central
PMC5940916
DOI
10.1038/s41598-018-25437-1
PII: 10.1038/s41598-018-25437-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.
Department of Geography and Environmental Science University of Reading Reading UK
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czech Republic
School of Agriculture Policy and Development University of Reading Reading UK
Zobrazit více v PubMed
Václavík T, Meentemeyer RK. Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecol. Modell. 2009;220:3248–3258. doi: 10.1016/j.ecolmodel.2009.08.013. DOI
Verbruggen H, et al. Improving Transferability of Introduced Species’ Distribution Models: New Tools to Forecast the Spread of a Highly Invasive Seaweed. PLoS One. 2013;8:1–13. PubMed PMC
Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003;12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x. DOI
Soberón J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 2007;10:1115–1123. doi: 10.1111/j.1461-0248.2007.01107.x. PubMed DOI
Menke SB, Holway DA, Fisher RN, Jetz W. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder. Glob. Ecol. Biogeogr. 2009;18:50–63. doi: 10.1111/j.1466-8238.2008.00420.x. DOI
Wiens JA. Spatial Scaling in Ecology Spatial scaling in ecology1. Source Funct. Ecol. 1989;3:385–397. doi: 10.2307/2389612. DOI
Gottschalk TK, Aue B, Hotes S, Ekschmitt K. Influence of grain size on species-habitat models. Ecol. Modell. 2011;222:3403–3412. doi: 10.1016/j.ecolmodel.2011.07.008. DOI
Connor, T. et al. Effects of grain size and niche breadth on species distribution modeling. Ecography (Cop.). 1–12, 10.1111/ecog.03416 (2017).
Song W, Kim E, Lee D, Lee M, Jeon SW. The sensitivity of species distribution modeling to scale differences. Ecol. Modell. 2013;248:113–118. doi: 10.1016/j.ecolmodel.2012.09.012. DOI
Hanberry BB. Finer grain size increases effects of error and changes influence of environmental predictors on species distribution models. Ecol. Inform. 2013;15:8–13. doi: 10.1016/j.ecoinf.2013.02.003. DOI
Fernández M, Hamilton H. Ecological niche transferability using invasive species as a case study. PLoS One. 2015;10:1–17. PubMed PMC
Mayer AL, Cameron GN. Consideration of grain and extent in landscape studies of terrestrial vertebrate ecology. Landsc. Urban Plan. 2003;65:201–217. doi: 10.1016/S0169-2046(03)00057-4. DOI
Porfirio LL, et al. Improving the use of species distribution models in conservation planning and management under climate change. PLoS One. 2014;9:1–21. doi: 10.1371/journal.pone.0113749. PubMed DOI PMC
Wang H, Liu D, Munroe D, Cao K, Biermann C. Study on selecting sensitive environmental variables in modelling species spatial distribution. Ann. GIS. 2016;22:57–69. doi: 10.1080/19475683.2015.1114523. DOI
Guisan A, et al. What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecol. Monogr. 2007;77:615–630. doi: 10.1890/06-1060.1. DOI
Venier La, Pearce J, McKee JE, McKenney DW, Niemi G. J. Climate and satellite-derived land cover for predicting breeding bird distribution in the Great Lakes basin. J. Biogeogr. 2004;31:315–331. doi: 10.1046/j.0305-0270.2003.01014.x. DOI
Guisan A, et al. Sensitivity of predictive species distribution models to change in grain size. Divers. Distrib. 2007;13:332–340. doi: 10.1111/j.1472-4642.2007.00342.x. DOI
Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 2007;16:24–33. doi: 10.1111/j.1466-8238.2006.00258.x. DOI
Roach, N. S., Hunter, E. A., Nibbelink, N. P. & Barrett, K. Poor transferability of a distribution model for a widespread coastal marsh bird in the southeastern United States. Ecosphere8 (2017).
Khosravi R, Hemami MR, Malekian M, Flint AL, Flint LE. Maxent modeling for predicting potential distribution of goitered gazelle in central Iran: The effect of extent and grain size on performance of the model. Turkish J. Zool. 2016;40:574–585. doi: 10.3906/zoo-1505-38. DOI
Luoto M, Virkkala R, Heikkinen RK. The role of land cover in bioclimatic models depends on spatial resolution. Glob. Ecol. Biogeogr. 2007;16:34–42. doi: 10.1111/j.1466-8238.2006.00262.x. DOI
Phillips, S. J., Dudik, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. 655–662 (2004).
Dehnen-Schmutz K, Williamson M. Rhododendron ponticum in Britain and Ireland: Social, economic and ecological factors in its successful invasion. Environ. Hist. Camb. 2006;12:325–350. doi: 10.3197/096734006778226355. DOI
Tiedeken EJ, Stout JC. Insect-flower interaction network structure is resilient to a temporary pulse of floral resources from invasive Rhododendron ponticum. PLoS One. 2015;10:1–19. doi: 10.1371/journal.pone.0119733. PubMed DOI PMC
Jackson, P. Rhododendron in Snowdonia and a strategy for its control. Snowdownia Natl. Park Auth. (2008).
Phillips SB, Aneja VP, Kang D, Arya SP. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int. J. Glob. Environ. Issues. 2006;6:231–252. doi: 10.1504/IJGENVI.2006.010156. DOI
Elith J, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI
Elith J, et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI
Wisz MS, et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008;14:763–773. doi: 10.1111/j.1472-4642.2008.00482.x. DOI
Brown JL. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014;5:694–700. doi: 10.1111/2041-210X.12200. PubMed DOI PMC
Harris CM, Stanford HL, Edwards C, Travis JMJ, Park KJ. Integrating demographic data and a mechanistic dispersal model to predict invasion spread of Rhododendron ponticum in different habitats. Ecol. Inform. 2011;6:187–195. doi: 10.1016/j.ecoinf.2011.03.004. DOI
Erfmeier A, Bruelheide H. Comparison of native and invasive Rhododendron ponticum populations: Growth, reproduction and morphology under field conditions. Flora - Morphol. Distrib. Funct. Ecol. Plants. 2004;199:120–133. doi: 10.1078/0367-2530-00141. DOI
Stephenson CM, MacKenzie ML, Edwards C, Travis JMJ. Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol. Modell. 2006;193:747–758. doi: 10.1016/j.ecolmodel.2005.09.007. DOI
Eşen D, Zedaker SM, Kirwan JL, Mou P. Soil and site factors influencing purple-flowered rhododendron (Rhododendron ponticum L.) and eastern beech forests (Fagus orientalis Lipsky) in Turkey. For. Ecol. Manage. 2004;203:229–240. doi: 10.1016/j.foreco.2004.07.052. DOI
Choudhury MR, Deb P, Singha H, Chakdar B, Medhi M. Predicting the probable distribution and threat of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland. Ecol. Eng. 2016;97:23–31. doi: 10.1016/j.ecoleng.2016.07.018. DOI
Gibson L, McNeill A, Tores P, de, Wayne A, Yates C. Will future climate change threaten a range restricted endemic species, the quokka (Setonix brachyurus), in south west Australia? Biol. Conserv. 2010;143:2453–2461. doi: 10.1016/j.biocon.2010.06.011. DOI
Hu R, et al. A bird’s view of new conservation hotspots in China. Biol. Conserv. 2017;211:47–55. doi: 10.1016/j.biocon.2017.03.033. DOI
Dormann CF, et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.). 2013;36:027–046. doi: 10.1111/j.1600-0587.2012.07348.x. DOI
Syfert, M. M., Smith, M. J. & Coomes, D. A. The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models. PLoS One8, (2013). PubMed PMC
Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–1293. doi: 10.1126/science.3287615. PubMed DOI
Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA. Evaluating resource selection functions. Ecol. Modell. 2002;157:281–300. doi: 10.1016/S0304-3800(02)00200-4. DOI
Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 2006;199:142–152. doi: 10.1016/j.ecolmodel.2006.05.017. DOI
Cianfrani C, Le Lay G, Hirzel AH, Loy A. Do habitat suitability models reliably predict the recovery areas of threatened species? J. Appl. Ecol. 2010;47:421–430. doi: 10.1111/j.1365-2664.2010.01781.x. DOI
Baniya CB, Solhøy T, Gauslaa Y, Palmer MW. Richness and Composition of Vascular Plants and Cryptogams along a High Elevational Gradient on Buddha Mountain, Central Tibet. Folia Geobot. 2012;47:135–151. doi: 10.1007/s12224-011-9113-x. DOI
Özesmi U, Mitsch WJ. A spatial habitat model for the marsh-breeding red-winged blackbird (Agelaius phoeniceus L.) in coastal Lake Erie wetlands. Ecol. Modell. 1997;101:139–152. doi: 10.1016/S0304-3800(97)01983-2. DOI
Palmer MW. Scale dependence of native and alien species richness in North American floras. Preslia. 2006;78:427–436.
Lawes MJ, Piper SE. There is less to binary maps than meets the eye: The use of species distribution data in the southern African sub-region. S. Afr. J. Sci. 1998;94:207–210.
Saura S. Effects of minimum mapping unit on land cover data spatial configuration and composition. Int. J. Remote Sens. 2002;23:4853–4880. doi: 10.1080/01431160110114493. DOI
Ödland A, Birks HJB. The altitudinal gradient of vascular plant richness in Anrland, western Norway. Ecography (Cop.). 1999;22:548–566. doi: 10.1111/j.1600-0587.1999.tb01285.x. DOI
Cross JR. The Establishment of Rhododendron Ponticum in the Killarney Oakwoods, S. W. Ireland Author (s): J. R. Cross Published by: British Ecological Society Stable http://www.jstor.org/stable/2259638 JSTOR is a not-for-profit service that helps scho. J. Ecol. 1981;69:807–824. doi: 10.2307/2259638. DOI
Taylor SL, Hill RA, Edwards C. Characterising invasive non-native Rhododendron ponticum spectra signatures with spectroradiometry in the laboratory and field: Potential for remote mapping. ISPRS J. Photogramm. Remote Sens. 2013;81:70–81. doi: 10.1016/j.isprsjprs.2013.04.003. DOI
Francon L, Corona C, Roussel E, Lopez Saez J, Stoffel M. Warm summers and moderate winter precipitation boost Rhododendron ferrugineum L. growth in the Taillefer massif (French Alps) Sci. Total Environ. 2017;586:1020–1031. doi: 10.1016/j.scitotenv.2017.02.083. PubMed DOI
Christiaens A, et al. Determining the minimum daily light integral for forcing of azalea (Rhododendron simsii) Sci. Hortic. (Amsterdam). 2014;177:1–9. doi: 10.1016/j.scienta.2014.07.028. DOI
Kang W, Minor ES, Lee D, Park CR. Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea. Acta Oecologica. 2016;71:31–38. doi: 10.1016/j.actao.2016.01.005. DOI
Evangelista, P. et al. Mapping Habitat and Potential Distributions of Invasive Plant Species on USFWS National Wildlife Refuges. 34 (2012).
Crall AW, et al. Using habitat suitability models to target invasive plant species surveys. Ecol. Appl. 2013;23:60–72. doi: 10.1890/12-0465.1. PubMed DOI
Guisan A, Thuiller W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005;8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x. PubMed DOI
Lenoir J, et al. Going against the flow: Potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography (Cop.). 2010;33:295–303.
Mott CL. Environmental Constraints to the Geographic Expansion of Plant and Animal Species. Nat. Educ. Knowl. 2010;3:72.
Soberon J, Nakamura M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. 2009;106:19644–19650. doi: 10.1073/pnas.0901637106. PubMed DOI PMC
Broennimann O, Guisan A. Predicting current and future biological invasions: both native and invaded ranges matter. Biol. Lett. 2008;4:585–589. doi: 10.1098/rsbl.2008.0254. PubMed DOI PMC
Seoane J, Carrascal LM, Alonso CL, Palomino D. Species-specific traits associated to prediction errors in bird habitat suitability modelling. Ecol. Modell. 2005;185:299–308. doi: 10.1016/j.ecolmodel.2004.12.012. DOI
Scenario-led modelling of broadleaf forest expansion in Wales