Scenario-led modelling of broadleaf forest expansion in Wales
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31218047
PubMed Central
PMC6549994
DOI
10.1098/rsos.190026
PII: rsos190026
Knihovny.cz E-zdroje
- Klíčová slova
- Markov chain, broadleaf expansion, habitat restoration, land use change, multi-layer perceptron,
- Publikační typ
- časopisecké články MeSH
Significant changes in the composition and extent of the UK forest cover are likely to take place in the coming decades. Current policy targets an increase in forest area, for example, the Welsh Government aims for forest expansion by 2030, and a purposeful shift from non-native conifers to broadleaved tree species, as identified by the UK Forestry Standard Guidelines on Biodiversity. Using the example of Wales, we aim to generate an evidence-based projection of the impact of contrasting policy scenarios on the state of forests in the near future, with the view of stimulating debate and aiding decisions concerning plausible outcomes of different policies. We quantified changes in different land use and land cover (LULC) classes in Wales between 2007 and 2015 and used a multi-layer perceptron-Markov chain ensemble modelling approach to project the state of Welsh forests in 2030 under the current and an alternative policy scenario. The current level of expansion and restoration of broadleaf forest in Wales is sufficient to deliver on existing policy goals. We also show effects of a more ambitious afforestation policy on the Welsh landscape. In a key finding, the highest intensity of broadleaf expansion is likely to shift from southeastern to more central areas of Wales. The study identifies the key predictors of LULC change in Wales. High-resolution future land cover simulation maps using these predictors offer an evidence-based tool for forest managers and government officials to test the effects of existing and alternative policy scenarios.
Department of Forestry and Range Management Bahauddin Zakariya University Bosan Road Multan Pakistan
Department of Geography and Environmental Sciences University of Reading Reading UK
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czech Republic
Natural Resources Wales Wales UK
School of Agriculture Policy and Development University of Reading Reading UK
Zobrazit více v PubMed
Liu YY, Van Dijk AIJM, De Jeu RAM, Canadell JG, Mccabe MF, Evans JP, Wang G. 2015. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 5, 470–474. (10.1038/nclimate2581) DOI
Lavorel S, Grigulis K, Leitinger G, Kohler M, Schirpke U, Tappeiner U. 2017. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Chang. 17, 2251–2264. (10.1007/s10113-017-1207-4) PubMed DOI PMC
FAO. 2010. Global forest resources assessment 2010. FAO Forestry Paper 163. Rome, Italy: FAO.
Forestry Commission. 2013. NFI 2011 woodland map GB.
Quine CP, Bailey SA, Watts K. 2013. Practitioner's perspective: sustainable forest management in a time of ecosystem services frameworks: common ground and consequences. J. Appl. Ecol. 50, 863–867. (10.1111/1365-2664.12068) PubMed DOI PMC
Blackstock T, Howe EA, Stevens J, Howe L, Jones P. 2010. Habitats of Wales: a comprehensive field survey, 1979–1997. See http://books.google.com/books?id=yDJFAQAAIAAJ&pgis=1.
Procter DS, Cottrell J, Watts K, Robinson EJH. 2015. Do non-native conifer plantations provide benefits for a native forest specialist, the wood ant Formica lugubris? For. Ecol. Manage. 357, 22–32. (doi:0.1016/j.foreco.2015.07.034)
Eşen D, Zedaker SM, Kirwan JL, Mou P. 2004. Soil and site factors influencing purple-flowered rhododendron (Rhododendron ponticum L.) and eastern beech forests (Fagus orientalis Lipsky) in Turkey. For. Ecol. Manage. 203, 229–240. (10.1016/j.foreco.2004.07.052) DOI
Barsoum N, Henderson L. 2016. Converting planted non-native conifer to native woodlands: a review of the benefits, drawbacks and experience in Britain. See https://www.forestry.gov.uk/pdf/FCRN024.pdf/$FILE/FCRN024.pdf.
Brandtberg PO, Lundkvist H, Bengtsson J. 2000. Changes in forest-floor chemistry caused by a birch admixture in Norway spruce stands. For. Ecol. Manage. 130, 253–264. (10.1016/S0378-1127(99)00183-8) DOI
Crawford RMM, Jeffree CE, Rees WG. 2003. Paludification and forest retreat in northern oceanic environments. Ann. Bot. 91, 213–226. (10.1093/aob/mcf185) PubMed DOI PMC
Morison J, et al. 2012. Understanding the carbon and greenhouse gas balance of forests in Britain. For. Comm. Res. Rep. i–vi, 1–149.
Gärtner S, Reif A. 2005. The response of ground vegetation to structural change during forest conversion in the southern Black Forest. Eur. J. For. Res. 124, 221–231. (10.1007/s10342-005-0065-7) DOI
Sweeney OFMD, Wilson MW, Irwin S, Kelly TC, O'Halloran J. 2010. The influence of a native tree species mix component on bird communities in non-native coniferous plantations in Ireland. Bird Study 57, 483–494. (10.1080/00063657.2010.489937) DOI
Brockerhoff HJ. 2007. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 10, 835–848. (10.1111/j.1461-0248.2007.01073.x) PubMed DOI
Haas SE, Hooten MB, Rizzo DM, Meentemeyer RK. 2011. Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol. Lett. 14, 1108–1116. (10.1111/j.1461-0248.2011.01679.x) PubMed DOI
Edwards D, Jay M, Jensen FS, Lucas B, Marzano M, Montagn C, Peace A, Weiss G. 2012. Public preferences for structural attributes of forests: towards a pan-European perspective. For. Policy Econ. 19, 12–19. (10.1016/j.forpol.2011.07.006) DOI
Welsh Government. 2009. Woodlands for Wales, the Welsh assembly government's strategy for woodlands and trees. See http://gov.wales/docs/statistics/2014/141113-woodlands-wales-indicators-2013-14-en.pdf.
HM Government. 2018. A green future: our 25 year plan to improve the environment. London, UK: Defra.
Welsh Assembly Government. 2010. Climate change strategy for Wales. See https://gov.wales/sites/default/files/publications/2019-04/climate-change-strategy-delivery-plan.pdf.
NRW. 2016. A summary of the State of Natural Resources Report. Natural Resources Wales.
Yanhui W, Bonell M, Feger K-H, Pengtao Y, Wei X, Lihong X. 2012. Changing forestry policy by integrating water aspects into forest/vegetation restoration in dryland areas in China. Bull. Chin. Acad. Sci. 2626, 59–67.
Chappell NA. 2006. Forests and floods: moving to an evidence-based approach to watershed and integrated flood management by Ian R. Calder (UK) and Bruce Aylward (USA). Water Int. 31, 541–543. (10.1080/02508060608691956) DOI
Kamusoko C, Wada Y, Furuya T, Tomimura S, Nasu M, Homsysavath K. 2013. Simulating future forest cover changes in Pakxeng District, Lao People's Democratic Republic (PDR): implications for sustainable forest management. Land 2, 1–19. (10.3390/land2010001) DOI
Soares-Filho BS, et al. 2006. Modelling conservation in the Amazon basin. Nature 440, 520–523. (10.1038/nature04389) PubMed DOI
Koomen E, Koekoek A, Dijk E. 2011. Simulating land-use change in a regional planning context. Appl. Spat. Anal. Policy 4, 223–247. (10.1007/s12061-010-9053-5) DOI
GoL. 2005. Forestry Strategy to the Year 2020. Vientiane Lao PDR. See http://theredddesk.org/sites/default/files/fs_2020.pdf.
Buenemann M, et al. 2011. Integrative geospatial approaches for the comprehensive monitoring and assessment of land management sustainability: rationale, potentials, and characteristics. L. Degrad. Dev. 22, 226–239. (10.1002/ldr.1074) DOI
Mishra VN, Rai PK. 2016. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 9, 249–259. (10.1007/s12517-015-2138-3) DOI
Zhang Q, Ban Y, Liu J, Hu Y. 2011. Simulation and analysis of urban growth scenarios for the Greater Shanghai Area, China. Comput. Environ. Urban Syst. 35, 126–139. (10.1016/j.compenvurbsys.2010.12.002) DOI
Nasiri V, Darvishsefat AA, Rafiee R, Shirvany A, Hemat MA. 2018. Land use change modeling through an integrated multi-layer perceptron neural network and Markov chain analysis (case study: Arasbaran region, Iran). J. For. Res. 30, 943–957. (10.1007/s11676-018-0659-9) DOI
Ahmed B, Ahmed R. 2012. Modeling urban land cover growth dynamics using multi-temporal satellite images: a case study of Dhaka, Bangladesh. ISPRS Int. J. Geo-Inf. 1, 3–31. (10.3390/ijgi1010003) DOI
Ozturk D. 2015. Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sens. 7, 5918–5950. (10.3390/rs70505918) DOI
Sleeter BM, et al. 2012. Scenarios of land use and land cover change in the conterminous United States : utilizing the special report on emission scenarios at ecoregional scales. Glob. Environ. Chang. 22, 896–914. (10.1016/j.gloenvcha.2012.03.008) DOI
Office for National Statistics. 2014. Statistical bulletin: annual mid year population estimates: 2013, 2014. London, UK: ONS.
Swetnam RD, Tweed FS. 2018. A tale of two landscapes: transferring landscape quality metrics from Wales to Iceland. Land Use Policy 76, 565–576. (10.1016/j.landusepol.2018.02.037) DOI
Forestry Commission. 2017. Chapter 1: woodland areas and planting. For Stat 2017, 37.
Research Service Natural Resources Wales. 2013. Forestry in Wales quick guide. For. Comm. For. Stat. (13/1748), 1–5.
Park C, Park T. 2014. Review of land use climate change: an assessment of the evidence base for climate change action in the agriculture, land use and wider foodchain sectors in Wales.
Clark Labs. 2015. Terrset tutorial. Worcester, MA: Clark Labs, Clark University.
Morton D, et al. 2011. Countryside survey: final report for LCM2007: the new UK Land Cover Map. Countryside survey technical report no. 11/07 NERC/Centre for Ecology & Hydrology 112 (CEH Project Number: C03259).
Verburg PH, Schot PP, Dijst MJ, Veldkamp A. 2004. Land use change modelling: current practice and research priorities. GeoJournal 61, 309–324. (10.1007/s10708-004-4946-y) DOI
Manzoor SA, Griffiths G, Lukac M. 2018. Species distribution model transferability and model grain size: finer may not always be better. Sci. Rep. 8, 7168 (10.1038/s41598-018-25437-1) PubMed DOI PMC
Hou J, et al. 2012. Localization of cerebral functional deficits in patients with obsessive–compulsive disorder. J. Affect. Disord. 138, 313–321. (10.1016/j.jad.2012.01.022) PubMed DOI
Megahed Y, Cabral P, Silva J, Caetano M. 2015. Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. ISPRS Int. J. Geo-Inf. 4, 1750–1769. (10.3390/ijgi4031750) DOI
Verburg PH, Ritsema van Eck JR, de Nijs TCM, Dijst MJ, Schot P.. 2004. Determinants of land-use change patterns in the Netherlands. Environ. Plan. B Plan. Des. 31, 125–150. (10.1068/b307) DOI
Eastman JR. 2006. Guide to GIS and image processing, vol. 1, pp. 87–131. Worcester, MA, USA: Clark Univ.
Laine T, Busemeyer J. 2004. Comparing agent-based learning models of land-use decision making. In Proc. 6th Int. Conf. on Cognitive Modeling, pp. 142–147. Mahwah, NJ: Lawrence Earlbaum.
Romano G, Abdelwahab OMM, Gentile F. 2018. Modeling land use changes and their impact on sediment load in a Mediterranean watershed. Catena 163, 342–353. (10.1016/j.catena.2017.12.039) DOI
Beygi HH, Banj SA, Erfanian M, Tayyebi A, Alijanpour A. 2019. Effects of preservation policy on land use changes in Iranian Northern Zagros forests. Land Use Policy 81, 76–90. (10.1016/j.landusepol.2018.10.036) DOI
Dadhich PN, Hanaoka S. 2010. Markov method integration with multi-layer perceptron classifier for simulation of urban growth of Jaipur City. In 6th Wseas Int. Conf. on Remote Sensing, Iwate, Japan, pp. 118–123.
Iizuka K, Johnson BA, Onishi A, Magcale-Macandog DB, Endo I, Bragais M. 2017. Modeling future urban sprawl and landscape change in the Laguna de Bay Area, Philippines. Land 6, 26 (10.3390/land6020026) DOI
Forestry Commission. 2017. UK forestry standard i.
Wales Forestry commission. 2018. Woodlands for Wales.
Warren-Thomas EHE. 2017. Woodlands in Wales: a quick guide. See http://www.assembly.wales/research%20documents/17-008-woodlands/17-008-web-english.pdf.
Forestry Commission. 2016. Woodlands for Wales Indicators 2015–16.
Forestry Commission. 2011. The UK forestry standard. Edinburgh, UK: Forestry Commission; See http://www.forestry.gov.uk/pdf/FCFC001.pdf/$FILE/FCFC001.pdf.
Harmer R, Morgan G. 2009. Storm damage and the conversion of conifer plantations to native broadleaved woodland. For. Ecol. Manage. 258, 879–886. (10.1016/j.foreco.2009.03.023) DOI
Stevens CJ, Payne RJ, Kimberley A, Smart SM. 2016. How will the semi-natural vegetation of the UK have changed by 2030 given likely changes in nitrogen deposition? Environ. Pollut 208, 879–889. (10.1016/j.envpol.2015.09.013) PubMed DOI
Thompson DBA, MacDonald AJ, Marsden JH, Galbraith CA. 1995. Upland heather moorland in Great Britain: a review of international importance, vegetation change and some objectives for nature conservation. Biol. Conserv. 71, 163–178. (10.1016/0006-3207(94)00043-P) DOI
Biodiversity and Nature Conservation Branch Welsh Government. 2013. The action plan for pollinators in wales, p. 28.
Polce C, et al. 2013. Species distribution models for crop pollination: a modelling framework applied to Great Britain. PLoS ONE 8, e0076308 (10.1371/journal.pone.0076308) PubMed DOI PMC
TACP. 2015. Green infrastructure action plan for pollinators in south-east Wales.
Georgakaki A, Ghandi K, Eames M, Kerr N, Gouldson A.. 2013. Scenario modelling for a low carbon Wales.
Committee for Climate Change. 2017. Building a low-carbon economy in Wales. Setting Welsh carbon targets. See https://www.theccc.org.uk/wp-content/uploads/2017/12/CCC-Building-a-low-carbon-economy-in-Wales-Setting-Welsh-climate-targets.pdf.
Quijas S, et al. 2019. Modelling carbon stock and carbon sequestration ecosystem services for policy design: a comprehensive approach using a dynamic vegetation model. Ecosyst. People 15, 42–60. (10.1080/26395908.2018.1542413) DOI
Hayhow DB, et al. 2016. State of nature: Wales. The State of Nature Partnership.
Snowdonia Rhododendron Partnership. 2015. The ecosystem benefits of managing the invasive non-native plant Rhododendron ponticum in Snowdonia.
Manzoor SA, Griffiths G, Iizuka K, Lukac M.. 2018. Land cover and climate change may limit invasiveness of Rhododendron ponticum in Wales. Front. Plant Sci. 9, 664 (10.3389/fpls.2018.00664) PubMed DOI PMC
Uddin K, Chaudhary S, Chettri N, Kotru R, Murthy M, Chaudhary RP, Ning W, Shrestha SM, Gautam SK. 2015. The changing land cover and fragmenting forest on the roof of the world: a case study in Nepal's Kailash Sacred Landscape. Landsc. Urban Plan. 141, 1–10. (10.1016/j.landurbplan.2015.04.003) DOI
Ye X, et al. 2018. Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains. Sci. Total Environ. 612, 775–787. (10.1016/j.scitotenv.2017.08.191) PubMed DOI
figshare
10.6084/m9.figshare.c.4496072