The genetic architecture of a host shift: An adaptive walk protected an aphid and its endosymbiont from plant chemical defenses

. 2020 May ; 6 (19) : eaba1070. [epub] 20200506

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32494722

Host shifts can lead to ecological speciation and the emergence of new pests and pathogens. However, the mutational events that facilitate the exploitation of novel hosts are poorly understood. Here, we characterize an adaptive walk underpinning the host shift of the aphid Myzus persicae to tobacco, including evolution of mechanisms that overcame tobacco chemical defenses. A series of mutational events added as many as 1.5 million nucleotides to the genome of the tobacco-adapted subspecies, M. p. nicotianae, and yielded profound increases in expression of an enzyme that efficiently detoxifies nicotine, both in aphid gut tissue and in the bacteriocytes housing the obligate aphid symbiont Buchnera aphidicola. This dual evolutionary solution overcame the challenge of preserving fitness of a mutualistic symbiosis during adaptation to a toxic novel host. Our results reveal the intricate processes by which genetic novelty can arise and drive the evolution of key innovations required for ecological adaptation.

Zobrazit více v PubMed

Drès M., Mallet J., Host races in plant-feeding insects and their importance in sympatric speciation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 471–492 (2002). PubMed PMC

Forbes A. A., Devine S. N., Hippee A. C., Tvedte E. S., Ward A. K. G., Widmayer H. A., Wilson C. J., Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71, 1126–1137 (2017). PubMed

Matsubayashi K. W., Ohshima I., Nosil P., Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134, 1–27 (2009).

Bernal J. S., Medina R. F., Agriculture sows pests: How crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores. Curr. Opin. Insect Sci. 26, 76–81 (2018). PubMed

Vertacnik K. L., Linnen C. R., Evolutionary genetics of host shifts in herbivorous insects: Insights from the age of genomics. Ann. N. Y. Acad. Sci. 1389, 186–212 (2017). PubMed

Bass C., Zimmer C. T., Riveron J. M., Wilding C. S., Wondji C. S., Kaussmann M., Field L. M., Williamson M. S., Nauen R., Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. U.S.A. 110, 19460–19465 (2013). PubMed PMC

Blackman R. L., Morphological discrimination of a tobacco-feeding form from Myzus persicae (Sulzer) (Hemiptera: Aphididae), and a key to New World Myzus (Nectarosiphon) species. Bull. Entomol. Res. 77, 713–730 (1987).

Katju V., Bergthorsson U., Copy-number changes in evolution: Rates, fitness effects and adaptive significance. Front. Genet. 4, 273 (2013). PubMed PMC

Rogers R. L., Bedford T., Hartl D. L., Formation and longevity of chimeric and duplicate genes in Drosophila melanogaster. Genetics 181, 313–322 (2009). PubMed PMC

Kelwick R., Desanlis I., Wheeler G. N., Edwards D. R., The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 16, 113 (2015). PubMed PMC

Shigenobu S., Watanabe H., Hattori M., Sakaki Y., Ishikawa H., Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000). PubMed

Ding L., Chen J., Zou J., Zhang L., Ye Y., Dynamic metabolomic responses of Escherichia coli to nicotine stress. Can. J. Microbiol. 60, 547–556 (2014). PubMed

Pavia C. S., Pierre A., Nowakowski J., Antimicrobial activity of nicotine against a spectrum of bacterial and fungal pathogens. J. Med. Microbiol. 49, 674–675 (2000). PubMed

Orr H. A., The genetic theory of adaptation: A brief history. Nat. Rev. Genet. 6, 119–127 (2005). PubMed

Chuong E. B., Elde N. C., Feschotte C., Regulatory activities of transposable elements: From conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2016). PubMed PMC

Feschotte C., Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008). PubMed PMC

Simon J.-C., d'Alençon E., Guy E., Jacquin-Joly E., Jaquiéry J., Nouhaud P., Peccoud J., Sugio A., Streiff R., Genomics of adaptation to host-plants in herbivorous insects. Brief. Funct. Genomics 14, 413–423 (2015). PubMed

Monti V., Lombardo G., Loxdale H. D., Manicardi G. C., Mandrioli M., Continuous occurrence of intra-individual chromosome rearrangements in the peach potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Genetica 140, 93–103 (2012). PubMed

Mittler T. E., Kunkel H., Wing production by grouped and isolated apterae of the aphid Myzus persicae on artificial diet. Entomol. Exp. Appl. 14, 83–92 (1971).

S. Andrews, FastQC: a quality control tool for high throughput sequence data (2010); www.bioinformatics.babraham.ac.uk/projects/fastqc.

www.bioinformatics.babraham.ac.uk/projects/trim_galore/.

Trapnell C., Roberts A., Goff L., Pertea G., Kim D., Kelley D. R., Pimentel H., Salzberg S. L., Rinn J. L., Pachter L., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012). PubMed PMC

H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv.1303.3997v1 [q-bio.GN]. (16 March 2013).

Xie C., Tammi M. T., CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10, 80 (2009). PubMed PMC

Pfaffl M. W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001). PubMed PMC

Vandesompele J., De Preter K., Pattyn F., Poppe B., Roy N. V., De Paepe A., Speleman F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1 (2002). PubMed PMC

J. B. Schenkman, I. Jansson, Spectral Analyses of Cytochromes P450. In Cytochrome P450 Protocols, I.R. Phillips, E. A. Shephard, Eds. (Humana Press, 2006).

Zhu F., Parthasarathy R., Bai H., Woithe K., Kaussmann M., Nauen R., Harrison D. A., Palli S. R., A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proc. Natl. Acad. Sci. U.S.A. 107, 8557–8562 (2010). PubMed PMC

Chen-Shan C., Alexander D. H., Marks P., Klammer A. A., Drake J., Heiner C., Clum A., Copeland A., Huddleston J., Eichler E. E., Turner S. W., Korlach J., Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013). PubMed

Traut W., Pachytene mapping in the female silkworm Bombyx mori L. (Lepidoptera). Chromosoma 58, 275–284 (1976). PubMed

Carabajal Paladino L. Z., Nguyen P., Šíchová J., Marec F., Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella. BMC Genet. 15, S15 (2014). PubMed PMC

Yoshido A., Bando H., Yasukochi Y., Sahara K., The Bombyx mori Karyotype and the Assignment of Linkage Groups. Genetics 170, 675–685 (2005). PubMed PMC

Reeves A., MicroMeasure: A new computer program for the collection and analysis of cytogenetic data. Genome 44, 439–443 (2001). PubMed

Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková Frydrychová R., Neven L. G., Sahara K., Marec F., Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. U.S.A. 110, 6931–6936 (2013). PubMed PMC

Kato A., Albert P. S., Vega J. M., Birchler J. A., Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 81, 71–78 (2006). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hierarchical architecture of neo-sex chromosomes and accelerated adaptive evolution in tortricid moths

. 2025 Jan 22 ; 35 (1) : 66-77. [epub] 20250122

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...