A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/K001744/1
Medical Research Council - United Kingdom
PubMed
31530873
PubMed Central
PMC6748993
DOI
10.1038/s41467-019-12175-9
PII: 10.1038/s41467-019-12175-9
Knihovny.cz E-zdroje
- MeSH
- chromozomy hmyzu genetika MeSH
- duplikace genu MeSH
- feromony metabolismus MeSH
- genom hmyzu MeSH
- hmyzí proteiny genetika metabolismus MeSH
- insekticidy farmakologie MeSH
- jednonukleotidový polymorfismus MeSH
- můry účinky léků genetika metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- receptory pachové genetika metabolismus MeSH
- rezistence k insekticidům * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- feromony MeSH
- hmyzí proteiny MeSH
- insekticidy MeSH
- receptory pachové MeSH
The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion.
Centre Agriculture Food Environment Italy
College of Biological and Environmental Engineering Zhejiang Shuren University Hangzhou 310015 China
College of Plant Health and Medicine Qingdao Agricultural University Qingdao 266109 China
College of Plant Protection Hunan Agricultural University Changsha 410128 China
College of Plant Protection Nanjing Agricultural University Nanjing 210095 China
Department of Biology and Biotechnology University of Pavia 27100 Pavia Italy
Ecology and Evolutionary Biology University of Kansas Lawrence KS 66046 USA
INRA Institute of Ecology and Environmental Sciences of Paris 78000 Versailles France
INRA Plantes et Systèmes de culture Horticole 228 route de l'Aérodrome 84914 Avignon Cedex 09 France
Zobrazit více v PubMed
Barnes, M. M. Codling moth occurrence, host race formation, and damage. In: Tortricid Pests: Their Biology, Natural Enemies and Control (eds Van der Geest, L. P. S., Evenhuis, H. H.) 313–327 (Elsevier Science Press, Amsterdam, 1991).
Vreysen MJB, Carpenter JE, Marec F. Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus) (Lepidoptera Tortricidae) to facilitate expansion of field application. J. Appl. Entomol. 2010;134:165–181. doi: 10.1111/j.1439-0418.2009.01430.x. DOI
Tadić MD. The Biology of the Codling Moth (Carpocapsa pomonella L.) as a Basis for Its Control. Belgrade: Univerzitet u Beogradu Press; 1957.
Shel’Deshova GG. Ecological factors determining distribution of the codling moth Lapspeyresia pomonella L. in the northern and southern hemispheres. Entomol. Rev. 1967;46:349–361.
IPPC. List of Regulated Pests. https://www.ippc.int/en/countries/all/regulatedpests/ (2017).
Asser-Kaiser S, et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science. 2007;317:1916–1918. doi: 10.1126/science.1146542. PubMed DOI
Witzgall P, Stelinski L, Gut L, Thomson D. Codling moth management and chemical ecology. Annu. Rev. Entomol. 2008;53:503–522. doi: 10.1146/annurev.ento.53.103106.093323. PubMed DOI
Raymond O, et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018;50:772–777. doi: 10.1038/s41588-018-0110-3. PubMed DOI PMC
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Ahola V, et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 2014;5:4737. doi: 10.1038/ncomms5737. PubMed DOI PMC
Traut W, Ahola V, Smith DAS, Gordon IJ, Ffrench-Constant RH. Karyotypes versus genomes: the nymphalid butterflies Melitaea cinxia, Danaus plexippus, and D. chrysippus. Cytogenet. Genome Res. 2017;153:46–53. doi: 10.1159/000484032. PubMed DOI
Cheng T, et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 2017;1:1747–1756. doi: 10.1038/s41559-017-0314-4. PubMed DOI
Liu J, Xiao H, Huang S, Li F. OMIGA: optimized maker-based insect genome annotation. Mol. Genet. Genomics. 2014;289:567–573. doi: 10.1007/s00438-014-0831-7. PubMed DOI
Wang K, et al. Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinforma. 2014;15:419. doi: 10.1186/s12859-014-0419-6. PubMed DOI PMC
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. doi: 10.1093/nar/25.5.955. PubMed DOI PMC
Lagesen K, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC
Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52. doi: 10.1093/nar/gkr688. PubMed DOI PMC
Li L, Stoeckert CJ, Jr., Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI
Fukova I, Nguyen P, Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI
Nguyen P, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl Acad. Sci. U SA. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC
Sichova J, Nguyen P, Dalikova M, Marec F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS ONE. 2013;8:e64520. doi: 10.1371/journal.pone.0064520. PubMed DOI PMC
Bergero R, Charlesworth D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol. 2009;24:94–102. doi: 10.1016/j.tree.2008.09.010. PubMed DOI
Joseph RM, Carlson JR. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet. 2015;31:683–695. doi: 10.1016/j.tig.2015.09.005. PubMed DOI PMC
Di C, Ning C, Huang LQ, Wang CZ. Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm. Insect Biochem. Mol. Biol. 2017;84:48–62. doi: 10.1016/j.ibmb.2017.03.007. PubMed DOI
Chen Y, Amrein H. Ionotropic receptors mediate Drosophila oviposition preference through sour gustatory receptor neurons. Curr. Biol. 2017;27:1–10. doi: 10.1016/j.cub.2016.10.044. PubMed DOI PMC
Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR. The molecular and cellular basis of bitter taste in Drosophila. Neuron. 2011;69:258–272. doi: 10.1016/j.neuron.2011.01.001. PubMed DOI PMC
Vosshall LB, Stensmyr MC. Wake up and smell the pheromones. Neuron. 2005;45:179–181. doi: 10.1016/j.neuron.2005.01.001. PubMed DOI
Chen XG, et al. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc. Natl Acad. Sci. USA. 2015;112:E5907–E5915. doi: 10.1073/pnas.1516410112. PubMed DOI PMC
Crava, C. M., Ramasamy, S., Ometto, L., Anfora, G. & Rota-Stabelli, O. Evolutionary insights into taste perception of the invasive pest Drosophila suzukii. G3: Genes, Genomes, Ge6, 4185–4196 (2016). PubMed PMC
Bengtsson JM, et al. A predicted sex pheromone receptor of codling moth Cydia pomonella detects the plant volatile pear ester. Front. Ecol. Evol. 2014;2:33.
Bengtsson JM, et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS ONE. 2012;7:e31620. doi: 10.1371/journal.pone.0031620. PubMed DOI PMC
Larsson MC, et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophilaolfaction. Neuron. 2004;43:703–714. doi: 10.1016/j.neuron.2004.08.019. PubMed DOI
Bäckman AC, et al. Antennal response of codling moth males, Cydia pomonella L. (Lepidoptera: Tortricidae), to the geometric isomers of codlemone and codlemone acetate. J. Comp. Physiol. A. 2000;186:513–519. doi: 10.1007/s003590000101. PubMed DOI
De Cristofaro A, et al. Electrophysiological responses of Cydia pomonella to codlemone and pear ester ethyl (E,Z)-2,4-decadienoate: peripheral interactions in their perception and evidences for cells responding to both compounds. Bull. Insectol. 2004;57:137–144.
Ansebo L, Ignell R, Lofqvist J, Hansson BS. Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillicaof the codling moth, Cydia pomonella (Lepidoptera: Tortricidae) J. Insect Physiol. 2005;51:1066–1074. doi: 10.1016/j.jinsphys.2005.05.003. PubMed DOI
Reyes M, et al. Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L.(Lepidoptera: Tortricidae). B. Entomol. Res. 2009;99:359–369. doi: 10.1017/S0007485308006366. PubMed DOI
Bouvier JC, et al. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved. Heredity. 2001;87:456–462. doi: 10.1046/j.1365-2540.2001.00928.x. PubMed DOI
Brun-Barale A, Bouvier J, Pauron D, Berge J, Sauphanor B. Involvement of a sodium channel mutation in pyrethroid resistance in Cydia pomonella L, and development of a diagnostic test. Pest Manag. Sci. 2005;61:549–554. doi: 10.1002/ps.1002. PubMed DOI
Cichon LB, Soleno J, Anguiano OL, Garrido SA, Montagna CM. Evaluation of cytochrome P450 activity in field populations of Cydia pomonella (Lepidoptera: Tortricidae) resistant to azinphosmethyl, acetamiprid, and thiacloprid. J. Econ. Entomol. 2013;106:939–944. doi: 10.1603/EC12349. PubMed DOI
Wang H, et al. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat. Commun. 2018;9:4820–4827. doi: 10.1038/s41467-018-07226-6. PubMed DOI PMC
Wang B, et al. Genome-wide analysis reveals the expansion of Cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis. Biochem. Biophys. Res. Commun. 2014;443:756–760. doi: 10.1016/j.bbrc.2013.12.045. PubMed DOI
Reyes M, Sauphanor B. Resistance monitoring in codling moth: a need for standardization. Pest Manag. Sci. 2008;64:945–953. doi: 10.1002/ps.1588. PubMed DOI
Cassanelli S, Reyes M, Rault M, Carlo Manicardi G, Sauphanor B. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.) Insect Biochem. Mol. Biol. 2006;36:642–653. doi: 10.1016/j.ibmb.2006.05.007. PubMed DOI
Sauphanor B, et al. Monitoring resistance to diflubenzuron and deltamethrin in French codling moth populations (Cydia pomonella) Pest Manag. Sci. 2000;56:74–82. doi: 10.1002/(SICI)1526-4998(200001)56:1<74::AID-PS96>3.0.CO;2-C. DOI
Chen W, et al. A high-quality chromosome-level genome assembly of a generalist herbivore, Trichoplusia ni. Mol. Ecol. Resour. 2018;19:485–496. doi: 10.1111/1755-0998.12966. PubMed DOI
Fu Y, et al. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. Elife. 2018;7:e31628. doi: 10.7554/eLife.31628. PubMed DOI PMC
You M, et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 2013;45:220–225. doi: 10.1038/ng.2524. PubMed DOI
Papanicolaou A, et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 2016;17:192–222. doi: 10.1186/s13059-016-1049-2. PubMed DOI PMC
Wurm Y, et al. The genome of the fire ant Solenopsis invicta. Proc. Natl Acad. Sci. USA. 2011;108:5679–5684. doi: 10.1073/pnas.1009690108. PubMed DOI PMC
McKenna DD, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol. 2016;17:227–244. doi: 10.1186/s13059-016-1088-8. PubMed DOI PMC
Yuvaraj JK, et al. Characterization of odorant receptors from a non-ditrysian moth, Eriocrania semipurpurella sheds light on the origin of sex pheromone receptors in Lepidoptera. Mol. Biol. Evol. 2017;34:2733–2746. doi: 10.1093/molbev/msx215. PubMed DOI PMC
Faucon F, et al. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res. 2015;25:1347–1359. doi: 10.1101/gr.189225.115. PubMed DOI PMC
Chin CS, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods. 2016;13:1050–1054. doi: 10.1038/nmeth.4035. PubMed DOI PMC
Pryszcz LP, Gabaldon T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 2016;44:e113. doi: 10.1093/nar/gkw294. PubMed DOI PMC
Walker BJ, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Servant N, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259–269. doi: 10.1186/s13059-015-0831-x. PubMed DOI PMC
Trapnell C, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012;7:562–578. doi: 10.1038/nprot.2012.016. PubMed DOI PMC
Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC
Korf I. Gene finding in novel genomes. BMC Bioinforma. 2004;5:59–67. doi: 10.1186/1471-2105-5-59. PubMed DOI PMC
Lomsadze A, Burns PD, Borodovsky M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 2014;42:e119. doi: 10.1093/nar/gku557. PubMed DOI PMC
Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinforma.48, 4.11.11–14.11.39 (2014). PubMed PMC
Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009;25:1335–1337. doi: 10.1093/bioinformatics/btp157. PubMed DOI PMC
Guerra-Assuncao JA, Enright AJ. MapMi: automated mapping of microRNA loci. BMC Bioinforma. 2010;11:133. doi: 10.1186/1471-2105-11-133. PubMed DOI PMC
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright A. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–D144. doi: 10.1093/nar/gkj112. PubMed DOI PMC
Grabherr MG, et al. Genome-wide synteny through highly sensitive sequence alignment: satsuma. Bioinformatics. 2010;26:1145–1151. doi: 10.1093/bioinformatics/btq102. PubMed DOI PMC
Wang G, Carey AF, Carlson JR, Zwiebel LJ. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA. 2010;107:4418–4423. doi: 10.1073/pnas.0913392107. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Danecek P, McCarthy SA. BCFtools/csq: haplotype-aware variant consequences. Bioinformatics. 2017;33:2037–2039. doi: 10.1093/bioinformatics/btx100. PubMed DOI PMC
Faucon F, et al. Unravelling genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res. 2015;25:1–13. doi: 10.1101/gr.189225.115. PubMed DOI PMC
Turner, S. D. qqman: an R package for visualizing GWAS results using QQ and manhattan plots. J. Open Source Softw. 3, 731 (2018).
Tang R, et al. Identification and testing of oviposition attractant chemical compounds for Musca domestica. Sci. Rep. 2016;6:33017. doi: 10.1038/srep33017. PubMed DOI PMC
Wu H, et al. Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species. Front. Behav. Neurosci. 2015;9:206. doi: 10.3389/fnbeh.2015.00206. PubMed DOI PMC
Tang R, Su MW, Zhang ZN. Electroantennogram responses of an invasive species fall webworm (Hyphantria cunea) to host volatile compounds. Chin. Sci. Bull. 2012;57:4560–4568. doi: 10.1007/s11434-012-5356-z. DOI
Chang H, et al. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Curr. Biol. 2017;27:1610–1615. doi: 10.1016/j.cub.2017.04.035. PubMed DOI