A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance

. 2019 Sep 17 ; 10 (1) : 4237. [epub] 20190917

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31530873

Grantová podpora
MR/K001744/1 Medical Research Council - United Kingdom

Odkazy

PubMed 31530873
PubMed Central PMC6748993
DOI 10.1038/s41467-019-12175-9
PII: 10.1038/s41467-019-12175-9
Knihovny.cz E-zdroje

The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion.

Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen 518120 China

Biology Centre of the Czech Academy of Sciences Institute of Entomology Branišovská 31 37005 České Budějovice Czech Republic

Centre Agriculture Food Environment Italy

College of Biological and Environmental Engineering Zhejiang Shuren University Hangzhou 310015 China

College of Plant Health and Medicine Qingdao Agricultural University Qingdao 266109 China

College of Plant Protection Hunan Agricultural University Changsha 410128 China

College of Plant Protection Nanjing Agricultural University Nanjing 210095 China

Department of Biology and Biotechnology University of Pavia 27100 Pavia Italy

Department of Sustainable Agro ecosystems and Bioresources IASMA Research and Innovation Centre Fondazione Edmund Mach Via Mach 1 38010 San Michele all'Adige Italy

Ecology and Evolutionary Biology University of Kansas Lawrence KS 66046 USA

Edinburgh Genomics and Institute of Evolutionary Biology School of Biological Sciences The King's Buildings The University of Edinburgh Edinburgh EH9 3JT UK

Faculty of Science University of South Bohemia Branišovská 1760 37005 České Budějovice Czech Republic

INRA Institute of Ecology and Environmental Sciences of Paris 78000 Versailles France

INRA Plantes et Systèmes de culture Horticole 228 route de l'Aérodrome 84914 Avignon Cedex 09 France

Institute of Plant Protection Xinjiang Academy of Agricultural and Reclamation Sciences Shihezi 832000 China

MARA CABI Joint Laboratory for Bio safety Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing 100193 China

Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests Institute of Insect Science College of Agriculture and Biotechnology Zhejiang University Hangzhou 310058 China

Northwest A and F University State Key Laboratory of Crop Stress Biology for Arid Areas Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture Yangling 712100 China

State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing 100193 China

State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology Chinese Academy of Sciences Beijing 100101 China

Technical Centre for Animal Plant and Food Inspection and Quarantine Shanghai Custom Shanghai 200135 China

Xinjiang Production and Construction Corps Key Laboratory of Integrated Pest Management on Agriculture in South Xinjiang Tarim University Alar 843300 China

Zobrazit více v PubMed

Barnes, M. M. Codling moth occurrence, host race formation, and damage. In: Tortricid Pests: Their Biology, Natural Enemies and Control (eds Van der Geest, L. P. S., Evenhuis, H. H.) 313–327 (Elsevier Science Press, Amsterdam, 1991).

Vreysen MJB, Carpenter JE, Marec F. Improvement of the sterile insect technique for codling moth Cydia pomonella (Linnaeus) (Lepidoptera Tortricidae) to facilitate expansion of field application. J. Appl. Entomol. 2010;134:165–181. doi: 10.1111/j.1439-0418.2009.01430.x. DOI

Tadić MD. The Biology of the Codling Moth (Carpocapsa pomonella L.) as a Basis for Its Control. Belgrade: Univerzitet u Beogradu Press; 1957.

Shel’Deshova GG. Ecological factors determining distribution of the codling moth Lapspeyresia pomonella L. in the northern and southern hemispheres. Entomol. Rev. 1967;46:349–361.

IPPC. List of Regulated Pests. https://www.ippc.int/en/countries/all/regulatedpests/ (2017).

Asser-Kaiser S, et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science. 2007;317:1916–1918. doi: 10.1126/science.1146542. PubMed DOI

Witzgall P, Stelinski L, Gut L, Thomson D. Codling moth management and chemical ecology. Annu. Rev. Entomol. 2008;53:503–522. doi: 10.1146/annurev.ento.53.103106.093323. PubMed DOI

Raymond O, et al. The Rosa genome provides new insights into the domestication of modern roses. Nat. Genet. 2018;50:772–777. doi: 10.1038/s41588-018-0110-3. PubMed DOI PMC

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Ahola V, et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat. Commun. 2014;5:4737. doi: 10.1038/ncomms5737. PubMed DOI PMC

Traut W, Ahola V, Smith DAS, Gordon IJ, Ffrench-Constant RH. Karyotypes versus genomes: the nymphalid butterflies Melitaea cinxia, Danaus plexippus, and D. chrysippus. Cytogenet. Genome Res. 2017;153:46–53. doi: 10.1159/000484032. PubMed DOI

Cheng T, et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 2017;1:1747–1756. doi: 10.1038/s41559-017-0314-4. PubMed DOI

Liu J, Xiao H, Huang S, Li F. OMIGA: optimized maker-based insect genome annotation. Mol. Genet. Genomics. 2014;289:567–573. doi: 10.1007/s00438-014-0831-7. PubMed DOI

Wang K, et al. Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinforma. 2014;15:419. doi: 10.1186/s12859-014-0419-6. PubMed DOI PMC

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. doi: 10.1093/nar/25.5.955. PubMed DOI PMC

Lagesen K, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC

Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52. doi: 10.1093/nar/gkr688. PubMed DOI PMC

Li L, Stoeckert CJ, Jr., Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC

Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56:564–577. doi: 10.1080/10635150701472164. PubMed DOI

Fukova I, Nguyen P, Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI

Nguyen P, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl Acad. Sci. U SA. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC

Sichova J, Nguyen P, Dalikova M, Marec F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS ONE. 2013;8:e64520. doi: 10.1371/journal.pone.0064520. PubMed DOI PMC

Bergero R, Charlesworth D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol. 2009;24:94–102. doi: 10.1016/j.tree.2008.09.010. PubMed DOI

Joseph RM, Carlson JR. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet. 2015;31:683–695. doi: 10.1016/j.tig.2015.09.005. PubMed DOI PMC

Di C, Ning C, Huang LQ, Wang CZ. Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm. Insect Biochem. Mol. Biol. 2017;84:48–62. doi: 10.1016/j.ibmb.2017.03.007. PubMed DOI

Chen Y, Amrein H. Ionotropic receptors mediate Drosophila oviposition preference through sour gustatory receptor neurons. Curr. Biol. 2017;27:1–10. doi: 10.1016/j.cub.2016.10.044. PubMed DOI PMC

Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR. The molecular and cellular basis of bitter taste in Drosophila. Neuron. 2011;69:258–272. doi: 10.1016/j.neuron.2011.01.001. PubMed DOI PMC

Vosshall LB, Stensmyr MC. Wake up and smell the pheromones. Neuron. 2005;45:179–181. doi: 10.1016/j.neuron.2005.01.001. PubMed DOI

Chen XG, et al. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc. Natl Acad. Sci. USA. 2015;112:E5907–E5915. doi: 10.1073/pnas.1516410112. PubMed DOI PMC

Crava, C. M., Ramasamy, S., Ometto, L., Anfora, G. & Rota-Stabelli, O. Evolutionary insights into taste perception of the invasive pest Drosophila suzukii. G3: Genes, Genomes, Ge6, 4185–4196 (2016). PubMed PMC

Bengtsson JM, et al. A predicted sex pheromone receptor of codling moth Cydia pomonella detects the plant volatile pear ester. Front. Ecol. Evol. 2014;2:33.

Bengtsson JM, et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS ONE. 2012;7:e31620. doi: 10.1371/journal.pone.0031620. PubMed DOI PMC

Larsson MC, et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophilaolfaction. Neuron. 2004;43:703–714. doi: 10.1016/j.neuron.2004.08.019. PubMed DOI

Bäckman AC, et al. Antennal response of codling moth males, Cydia pomonella L. (Lepidoptera: Tortricidae), to the geometric isomers of codlemone and codlemone acetate. J. Comp. Physiol. A. 2000;186:513–519. doi: 10.1007/s003590000101. PubMed DOI

De Cristofaro A, et al. Electrophysiological responses of Cydia pomonella to codlemone and pear ester ethyl (E,Z)-2,4-decadienoate: peripheral interactions in their perception and evidences for cells responding to both compounds. Bull. Insectol. 2004;57:137–144.

Ansebo L, Ignell R, Lofqvist J, Hansson BS. Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillicaof the codling moth, Cydia pomonella (Lepidoptera: Tortricidae) J. Insect Physiol. 2005;51:1066–1074. doi: 10.1016/j.jinsphys.2005.05.003. PubMed DOI

Reyes M, et al. Worldwide variability of insecticide resistance mechanisms in the codling moth, Cydia pomonella L.(Lepidoptera: Tortricidae). B. Entomol. Res. 2009;99:359–369. doi: 10.1017/S0007485308006366. PubMed DOI

Bouvier JC, et al. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and number of genes involved. Heredity. 2001;87:456–462. doi: 10.1046/j.1365-2540.2001.00928.x. PubMed DOI

Brun-Barale A, Bouvier J, Pauron D, Berge J, Sauphanor B. Involvement of a sodium channel mutation in pyrethroid resistance in Cydia pomonella L, and development of a diagnostic test. Pest Manag. Sci. 2005;61:549–554. doi: 10.1002/ps.1002. PubMed DOI

Cichon LB, Soleno J, Anguiano OL, Garrido SA, Montagna CM. Evaluation of cytochrome P450 activity in field populations of Cydia pomonella (Lepidoptera: Tortricidae) resistant to azinphosmethyl, acetamiprid, and thiacloprid. J. Econ. Entomol. 2013;106:939–944. doi: 10.1603/EC12349. PubMed DOI

Wang H, et al. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat. Commun. 2018;9:4820–4827. doi: 10.1038/s41467-018-07226-6. PubMed DOI PMC

Wang B, et al. Genome-wide analysis reveals the expansion of Cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis. Biochem. Biophys. Res. Commun. 2014;443:756–760. doi: 10.1016/j.bbrc.2013.12.045. PubMed DOI

Reyes M, Sauphanor B. Resistance monitoring in codling moth: a need for standardization. Pest Manag. Sci. 2008;64:945–953. doi: 10.1002/ps.1588. PubMed DOI

Cassanelli S, Reyes M, Rault M, Carlo Manicardi G, Sauphanor B. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.) Insect Biochem. Mol. Biol. 2006;36:642–653. doi: 10.1016/j.ibmb.2006.05.007. PubMed DOI

Sauphanor B, et al. Monitoring resistance to diflubenzuron and deltamethrin in French codling moth populations (Cydia pomonella) Pest Manag. Sci. 2000;56:74–82. doi: 10.1002/(SICI)1526-4998(200001)56:1<74::AID-PS96>3.0.CO;2-C. DOI

Chen W, et al. A high-quality chromosome-level genome assembly of a generalist herbivore, Trichoplusia ni. Mol. Ecol. Resour. 2018;19:485–496. doi: 10.1111/1755-0998.12966. PubMed DOI

Fu Y, et al. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. Elife. 2018;7:e31628. doi: 10.7554/eLife.31628. PubMed DOI PMC

You M, et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nat. Genet. 2013;45:220–225. doi: 10.1038/ng.2524. PubMed DOI

Papanicolaou A, et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 2016;17:192–222. doi: 10.1186/s13059-016-1049-2. PubMed DOI PMC

Wurm Y, et al. The genome of the fire ant Solenopsis invicta. Proc. Natl Acad. Sci. USA. 2011;108:5679–5684. doi: 10.1073/pnas.1009690108. PubMed DOI PMC

McKenna DD, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol. 2016;17:227–244. doi: 10.1186/s13059-016-1088-8. PubMed DOI PMC

Yuvaraj JK, et al. Characterization of odorant receptors from a non-ditrysian moth, Eriocrania semipurpurella sheds light on the origin of sex pheromone receptors in Lepidoptera. Mol. Biol. Evol. 2017;34:2733–2746. doi: 10.1093/molbev/msx215. PubMed DOI PMC

Faucon F, et al. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res. 2015;25:1347–1359. doi: 10.1101/gr.189225.115. PubMed DOI PMC

Chin CS, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods. 2016;13:1050–1054. doi: 10.1038/nmeth.4035. PubMed DOI PMC

Pryszcz LP, Gabaldon T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 2016;44:e113. doi: 10.1093/nar/gkw294. PubMed DOI PMC

Walker BJ, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Servant N, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259–269. doi: 10.1186/s13059-015-0831-x. PubMed DOI PMC

Trapnell C, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012;7:562–578. doi: 10.1038/nprot.2012.016. PubMed DOI PMC

Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC

Korf I. Gene finding in novel genomes. BMC Bioinforma. 2004;5:59–67. doi: 10.1186/1471-2105-5-59. PubMed DOI PMC

Lomsadze A, Burns PD, Borodovsky M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 2014;42:e119. doi: 10.1093/nar/gku557. PubMed DOI PMC

Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinforma.48, 4.11.11–14.11.39 (2014). PubMed PMC

Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009;25:1335–1337. doi: 10.1093/bioinformatics/btp157. PubMed DOI PMC

Guerra-Assuncao JA, Enright AJ. MapMi: automated mapping of microRNA loci. BMC Bioinforma. 2010;11:133. doi: 10.1186/1471-2105-11-133. PubMed DOI PMC

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright A. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–D144. doi: 10.1093/nar/gkj112. PubMed DOI PMC

Grabherr MG, et al. Genome-wide synteny through highly sensitive sequence alignment: satsuma. Bioinformatics. 2010;26:1145–1151. doi: 10.1093/bioinformatics/btq102. PubMed DOI PMC

Wang G, Carey AF, Carlson JR, Zwiebel LJ. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA. 2010;107:4418–4423. doi: 10.1073/pnas.0913392107. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Danecek P, McCarthy SA. BCFtools/csq: haplotype-aware variant consequences. Bioinformatics. 2017;33:2037–2039. doi: 10.1093/bioinformatics/btx100. PubMed DOI PMC

Faucon F, et al. Unravelling genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res. 2015;25:1–13. doi: 10.1101/gr.189225.115. PubMed DOI PMC

Turner, S. D. qqman: an R package for visualizing GWAS results using QQ and manhattan plots. J. Open Source Softw. 3, 731 (2018).

Tang R, et al. Identification and testing of oviposition attractant chemical compounds for Musca domestica. Sci. Rep. 2016;6:33017. doi: 10.1038/srep33017. PubMed DOI PMC

Wu H, et al. Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species. Front. Behav. Neurosci. 2015;9:206. doi: 10.3389/fnbeh.2015.00206. PubMed DOI PMC

Tang R, Su MW, Zhang ZN. Electroantennogram responses of an invasive species fall webworm (Hyphantria cunea) to host volatile compounds. Chin. Sci. Bull. 2012;57:4560–4568. doi: 10.1007/s11434-012-5356-z. DOI

Chang H, et al. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Curr. Biol. 2017;27:1610–1615. doi: 10.1016/j.cub.2017.04.035. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...