Odorant receptor phylogeny confirms conserved channels for sex pheromone and host plant signals in tortricid moths
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
32760532
PubMed Central
PMC7391548
DOI
10.1002/ece3.6458
PII: ECE36458
Knihovny.cz E-resources
- Keywords
- Lepidoptera, Tortricidae, behavior‐modifying chemicals, kairomone, olfaction, reproductive behavior, semiochemical, sustainable insect control,
- Publication type
- Journal Article MeSH
The search for mates and food is mediated by volatile chemicals. Insects sense food odorants and sex pheromones through odorant receptors (ORs) and pheromone receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phylogenetics of ORs, informed by behavioral and functional data, generates sound hypotheses for the identification of semiochemicals driving olfactory behavior. Studying orthologous receptors and their ligands across taxa affords insights into the role of chemical communication in reproductive isolation and phylogenetic divergence. The female sex pheromone of green budworm moth Hedya nubiferana (Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of both elicits male attraction. Females produce in addition codlemone, which is the sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also attracts green budworm moth males. Concomitantly, green budworm and codling moth males are attracted to the host plant volatile pear ester. A congruent behavioral response to the same pheromone and plant volatile in two tortricid species suggests co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to both compounds, the sex pheromone codlemone and the plant volatile pear ester. Our phylogenetic analysis finds that green budworm moth expresses an orthologous PR gene. Shared ancestry, and high levels of amino acid identity and sequence similarity, in codling and green budworm moth PRs offer an explanation for parallel attraction of both species to the same compounds. A conserved olfactory channel for a sex pheromone and a host plant volatile substantiates the alliance of social and habitat signals in insect chemical communication. Field attraction assays confirm that in silico investigations of ORs afford powerful predictions for an efficient identification of behavior-modifying semiochemicals, for an improved understanding of the mechanisms of host plant attraction in insect herbivores and for the further development of sustainable insect control.
ChemTica Internacional Heredia Costa Rica
Corporación Colombiana de Investgación Agropecuaria Agrosavia Mosquera Colombia
Department to Plant Protection Biology Swedish University of Agricultural Sciences Alnarp Sweden
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Faculty of Health and Life Sciences Linnaeus University Kalmar Sweden
Molecular Ecology and Evolution Lab Department of Biology Lund University Lund Sweden
See more in PubMed
Ansebo, L. , Ignell, R. , Löfqvist, J. , & Hansson, B. S. (2005). Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology, 51, 1066–1074. 10.1016/j.jinsphys.2005.05.003 PubMed DOI
Arguello, J. R. , Cardoso‐Moreira, M. , Grenier, J. K. , Gottipati, S. , Clark, A. G. , & Benton, R. (2016). Extensive local adaptation within the chemosensory system following Drosophila melanogaster's global expansion. Nature Communications, 7, 11855 10.1038/ncomms11855 PubMed DOI PMC
Arn, H. , Rauscher, S. , & Schmid, A. (1979). Sex attractant formulations and traps for the grape moth Eupoecilia ambiguella Hb. Mitteilungen Der Schweizer Entomologischen Gesellschaft, 52, 49–55.
Arn, H. , Schwarz, C. , Limacher, H. , & Mani, E. (1974). Sex attractant inhibitors of the codling moth Laspeyresia pomonella L. Experientia, 30, 1142–1144. 10.1007/BF01923655 PubMed DOI
Arn, H. , Städler, E. , & Rauscher, S. (1975). The electroantennographic detector ‐ a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift Für Naturforschung, 30c, 722–725. 10.1515/znc-1975-11-1204 DOI
Bäckman, A.‐C. , Anderson, P. , Bengtsson, M. , Löfqvist, J. , Unelius, C. R. , & Witzgall, P. (2000). Antennal response of codling moth males, Cydia pomonella (L.) (Lepidoptera: Tortricidae), to the geometric isomers of codlemone and codlemone acetate. Journal of Comparative Physiology A, 186, 513–519. 10.1007/s003590000 PubMed DOI
Bäckman, A.‐C. , Bengtsson, M. , & Witzgall, P. (1997). Pheromone release by individual females of codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae). Journal of Chemical Ecology, 23, 807–815. 10.1023/B:JOEC.0000006412.16914.09 DOI
Baker, T. C. (2002). Mechanism for saltational shifts in pheromone communication systems. Proceedings of the National Academy of Science USA, 99, 13368–13370. 10.1073/pnas.222539799 PubMed DOI PMC
Bengtsson, J. M. , Gonzalez, F. , Cattaneo, A. M. , Montagne, N. , Walker, W. B. , Bengtsson, M. , … Witzgall, P. (2014). A predicted sex pheromone receptor of codling moth Cydia pomonella detects the plant volatile pear ester. Frontiers in Ecology Evolution, 2, 33 10.3389/fevo.2014.00033 DOI
Bengtsson, J. M. , Trona, F. , Montagne, N. , Anfora, G. , Ignell, R. , Witzgall, P. , & Jacquin‐Joly, E. (2012). Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS One, 7(2), e31620 10.1371/journal.pone.0031620 PubMed DOI PMC
Bengtsson, M. , Jaastad, G. , Knudsen, G. , Kobro, S. , Bäckman, A.‐C. , Pettersson, E. , & Witzgall, P. (2006). Plant volatiles mediate attraction to host and non‐host plant in apple fruit moth, Argyresthia conjugella . Entomolgia Experimentalis Et Applicata, 118, 77–85. 10.1111/j.1570-7458.2006.00359.x DOI
Bengtsson, M. , Liljefors, T. , Hansson, B. S. , Löfstedt, C. , & Copaja, S. V. (1990). Structure‐activity relationships for chain‐shortened analogs of (Z)‐5‐decenyl acetate, a pheromone component of the turnip moth, Agrotis segetum . Journal of Chemical Ecology, 16, 667–684. 10.1007/BF01016478 PubMed DOI
Borrero‐Echeverry, F. , Bengtsson, M. , Nakamuta, K. , & Witzgall, P. (2018). Plant odour and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution, 72, 2225–2233. 10.1111/evo.13571 PubMed DOI PMC
Boughman, J. W. (2002). How sensory drive can promote speciation. Trends in Ecology and Evolution, 17, 571–577. 10.1016/S0169-5347(02)02595-8 DOI
Bradley, J. D. , Tremewan, W. G. , & Smith, A. (1979). British tortricoid moths. Tortricidae: Olethreutinae. London, UK: The Ray Society.
Braunschmid, H. , Mükisch, B. , Rupp, T. , Schäffler, I. , Zito, P. , Birtele, D. , & Dötterl, S. (2017). Interpopulation variation in pollinators and floral scent of the lady’s‐slipper orchid Cypripedium calceolus L. Arthropod‐Plant Interactions, 11, 363–379. 10.1007/s11829-017-9512-x DOI
Bruce, T. J. A. , & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects ‐ finding the right mix. Phytochemistry, 72, 1605–1611. 10.1016/j.phytochem.2011.04.011 PubMed DOI
Caballero‐Vidal, G. , Bouysset, C. , Grunig, H. , Fiorucci, S. , Montagné, N. , Golebiowski, J. , & Jacquin‐Joly, E. (2020). Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Scientific Reports, 10(1), 1–9. 10.1038/s41598-020-58564-9 PubMed DOI PMC
Cao, D. , Liu, Y. , Wei, J. , Liao, X. , Walker, W. B. , Li, J. , & Wang, G. (2014). Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis. International Journal of Biological Science, 10, 846–860. 10.7150/ijbs.9297 PubMed DOI PMC
Cao, S. , Huang, T. , Shen, J. , Liu, Y. , & Wang, G. (2020). An orphan pheromone receptor affects the mating behavior of Helicoverpa armigera . Frontires in Physiology, 11, 413 10.3389/fphys.2020.00413 PubMed DOI PMC
Carde, A. M. , Baker, T. C. , & Carde, R. T. (1979). Identification of a four‐component sex pheromone of the female Oriental fruit moth, Grapholitha molesta (Lepidoptera: Tortricidae). Journal of Chemical Ecology, 5, 423–427. 10.1007/BF00987927 DOI
Carde, R. T. , & Minks, A. K. (1995). Control of moth pests by mating disruption: Successes and constraints. Annual Review of Entomology, 40, 559–585. 10.1146/annurev.en.40.010195.003015 DOI
Carson, R. (1962). Silent Spring. Boston, MA: Houghton Mifflin.
Cattaneo, A. M. , Gonzalez, F. , Bengtsson, J. M. , Corey, E. A. , Jacquin‐Joly, E. , Montagne, N. , … Bobkov, Y. V. (2017). Candidate pheromone receptors from the insect pest Cydia pomonella respond to pheromone and kairomone components. Scientific Reports, 7, 41105 10.1038/srep41105 PubMed DOI PMC
Chandler, D. , Bailey, A. S. , Tatchell, G. M. , Davidson, G. , Greaves, J. , & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London B, 366, 1987–1998. 10.1098/rstb.2010.0390 PubMed DOI PMC
Chang, X. Q. , Nie, X. P. , Zhang, Z. , Zeng, F. F. , Lv, L. , Zhang, S. , & Wang, M. Q. (2017). De novo analysis of the oriental armyworm Mythimna separata antennal transcriptome and expression patterns of odorant‐binding proteins. Comparative Biochemistry and Physiology D, 22, 120–130. 10.1016/j.cbd.2017.03.001 PubMed DOI
Chepurwar, S. , Gupta, A. , Haddad, R. , & Gupta, N. (2019). Sequence‐based prediction of olfactory receptor responses. Chemical Senses, 44, 693–703. 10.1093/chemse/bjz078 PubMed DOI PMC
Chmiel, J. A. , Daisley, B. A. , Burton, J. P. , & Reid, G. (2019). Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. MBio, 10, e01395‐19 10.1128/mBio.01395-19 PubMed DOI PMC
Clyne, P. J. , Warr, C. G. , Freeman, M. R. , Lessing, D. , Kim, J. , & Carlson, J. R. (1999). A novel family of divergent seven‐transmembrane proteins: Candidate odorant receptors in Drosophila . Neuron, 22, 327–338. 10.1016/S0896-6273(00)81093-4 PubMed DOI
Conchou, L. , Lucas, P. , Meslin, C. , Proffit, M. , Staudt, M. , & Renou, M. (2019). Insect odorscapes: From plant volatiles to natural olfactory scenes. Frontiers in Physiology, 10, 972 10.3389/fphys.2019.00972 PubMed DOI PMC
Corcoran, J. A. , Jordan, M. D. , Thrimawithana, A. H. , Crowhurst, R. N. , & Newcomb, R. D. (2015). The peripheral olfactory repertoire of the lightbrown apple moth, Epiphyas p ostvittana . PLoS One, 10, e0128596 10.1371/journal.pone.0128596 PubMed DOI PMC
Couto, A. , Alenius, M. , & Dickson, B. J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Current Biology, 15, 1535–1547. 10.1016/j.cub.2005.07.034 PubMed DOI
De Fouchier, A. , Walker, W. B. , Montagne, N. , Steiner, C. , Binyameen, M. , Schlyter, F. , … Jacquin‐Joly, E. (2017). Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nature Communications, 8, 1–11. 10.1038/ncomms15709 PubMed DOI PMC
Deutsch, C. A. , Tewksbury, J. J. , Tigchelaar, M. , Battisti, D. S. , Merrill, S. C. , Huey, R. B. , & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361, 916–919. 10.1126/science.aat3466 PubMed DOI
Dietrich, M. (2003). Richard Goldschmidt: Hopeful monsters and other 'heresies'. Nature Reviews Genetics, 4, 68–74. 10.1038/nrg979 PubMed DOI
Dobritsa, A. A. , Van Naters, W. V. D. G. , Warr, C. G. , Steinbrecht, R. A. , & Carlson, J. R. (2003). Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron, 37, 827–841. 10.1016/S0896-6273(03)00094-1 PubMed DOI
Dong, J. , Song, Y. , Li, W. , Shi, J. , & Wang, Z. (2016). Identification of putative chemosensory receptor genes from the Athetis dissimilis antennal transcriptome. PLoS One, 11, e0147768 10.1371/journal.pone.0147768 PubMed DOI PMC
Du, L. , Zhao, X. , Liang, X. , Gao, X. , Liu, Y. , & Wang, G. (2018). Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis. BMC Genomics, 19, 518 10.1186/s12864-018-4898-0 PubMed DOI PMC
El‐Sayed, A. M. (2019). The pherobase: database of pheromones and semiochemicals. www.pherobase.com
El‐Sayed, A. M. , Suckling, D. M. , Byers, J. A. , Jang, E. B. , & Wearing, C. H. (2009). Potential of “lure and kill” in long‐term pest management and eradication of invasive species. Journal of Economic Entomology, 102, 815–835. 10.1603/029.102.0301 PubMed DOI
El‐Sayed, A. , Unelius, R. C. , Liblikas, I. , Löfqvist, J. , Bengtsson, M. , & Witzgall, P. (1998). Effect of codlemone isomers on codling moth (Lepidoptera: Tortricidae) male attraction. Environmental Entomology, 27, 1250–1254. 10.1093/ee/27.5.1250 DOI
Evenden, M. L. , & Silk, P. J. (2016). The influence of Canadian research on semiochemical‐based management of forest insect pests in Canada. The Canadian Entomologist, 148, S170–S209. 10.4039/tce.2015.17 DOI
Feng, B. , Guo, Q. , Zheng, K. , Qin, Y. , & Du, Y. (2017). Antennal transcriptome analysis of the piercing moth Oraesia emarginata (Lepidoptera: Noctuidae). PLoS One, 12, e0179433 10.1371/journal.pone.0179433 PubMed DOI PMC
Fleischer, J. , Pregitzer, P. , Breer, H. , & Krieger, J. (2018). Access to the odor world: Olfactory receptors and their role for signal transduction in insects. Cellular and Molecular Life Sciences, 75, 485–508. 10.1007/s00018-017-2627-5 PubMed DOI PMC
Frerot, B. , Priesner, E. , & Gallois, M. (1979). A sex attractant for the green budworm moth, Hedya nubiferana . Zeitschrift Für Naturforschung, 34c, 1248–1252. 10.1515/znc-1979-1229 DOI
Gonzalez, F. , Bengtsson, J. M. , Walker, W. B. , Rodrigues Sousa, M. F. , Cattaneo, A. M. , Montagné, N. , … Bengtsson, M. (2015). A conserved odorant receptor detects the same 1‐indanone analogs in a tortricid and a noctuid moth. Frontires in Ecology and Evolution, 3, 131 10.3389/fevo.2015.00131 DOI
Gonzalez, F. , Sousa, M. , Conchou, L. , Walker, W. B. , Chakraborty, A. , Karlsson, M. , … Witzgall, P. (2020). An endophytic yeast odorant mediates codling moth attraction to apple (submitted).
Gonzalez, F. , Witzgall, P. , & Walker, W. B. (2016). Protocol for heterologous expression of insect odourant receptors in Drosophila . Frontiers in Ecology Evolution, 4, 24 10.3389/fevo.2016.00024 DOI
Gonzalez, F. , Witzgall, P. , & Walker, W. B. (2017). Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues. Scientific Reports, 7, 41829 10.1038/srep41829 PubMed DOI PMC
Grabe, V. , Strutz, A. , Baschwitz, A. , Hansson, B. S. , & Sachse, S. (2015). Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster . Journal of Comparative Neurology, 523, 530–544. 10.1002/cne.23697 PubMed DOI
Gregg, P. C. , Del Socorro, A. P. , & Landolt, P. J. (2018). Advances in attract‐and‐kill for agricultural pests: Beyond pheromones. Annual Review of Entomology, 63, 453–470. 10.1146/annurev-ento-031616-035040 PubMed DOI
Hallem, E. A. , Ho, M. G. , & Carlson, J. R. (2004). The molecular basis of odor coding in the Drosophila antenna. Cell, 117, 965–979. 10.1016/j.cell.2004.05.012 PubMed DOI
Hathaway, D. O. , McGovern, T. P. , Beroza, M. , Moffitt, H. R. , McDonough, L. M. , & Butt, B. A. (1974). An inhibitor of sexual attraction of male codling moths to a synthetic sex pheromone and virgin females in traps. Environmental Entomology, 3, 522–524. 10.1093/ee/3.3.522 DOI
Jactel, H. , Verheggen, F. , Thiéry, D. , Escobar‐Gutiérrez, A. J. , Gachet, E. , & Desneux, N. , Neonicotinoids Working Group (2019). Alternatives to neonicotinoids. Environment International, 129, 423–429. 10.1016/j.envint.2019.04.045 PubMed DOI
Jia, X.‐J. , Wang, H.‐X. , Yan, Z.‐G. , Zhang, M.‐Z. , Wei, C.‐H. , Qin, X.‐C. , … Du, Y.‐L. (2016). Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Scientific Reports, 6, 29067 10.1038/srep29067 PubMed DOI PMC
Jia, X. , Zhang, X. , Liu, H. , Wang, R. , & Zhang, T. (2018). Identification of chemosensory genes from the antennal transcriptome of Indian meal moth Plodia interpunctella . PLoS One, 13, e0189889 10.1371/journal.pone.0189889 PubMed DOI PMC
Jiang, X. J. , Guo, H. , Di, C. , Yu, S. , Zhu, L. , Huang, L. Q. , & Wang, C. Z. (2014). Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related Helicoverpa species. Insect Biochemistry and Molecular Biology, 48, 63–74. 10.1016/j.ibmb.2014.02.010 PubMed DOI
Jósvai, J. K. , Koczor, S. , & Tóth, M. (2016). Traps baited with pear ester and acetic acid attract both sexes of Hedya nubiferana (Lepidoptera: Tortricidae). Journal of Applied Entomology, 140, 81–90. 10.1111/jen.12216 DOI
Katoh, K. , Rozewicki, J. , & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC
Khan, Z. R. , Midega, C. A. O. , Pittchar, J. O. , Murage, A. W. , Birkett, M. A. , Bruce, T. J. A. , & Pickett, J. A. (2014). Achieving food security for one million sub‐Saharan African poor through push‐pull innovation by 2020. Philosophical Transactions of the Royal Society B, 369, 20120284 10.1098/rstb.2012.0284 PubMed DOI PMC
Knight, A. L. , & Light, D. M. (2013). Adding microencapsulated pear ester to insecticides for control of Cydia pomonella (Lepidoptera: Tortricidae) in apple. Pest Management Science, 69, 66–74. 10.1002/ps.3363 PubMed DOI
Knight, A. , Light, D. , & Chebny, V. (2013). Monitoring codling moth (Lepidoptera: Tortricidae) in orchards treated with pear ester and sex pheromone combo dispensers. Journal of Applied Entomology, 137, 214–224. 10.1111/j.1439-0418.2012.01715.x DOI
Knight, A. L. , Mujica, V. , Herrera, S. L. , & Tasin, M. (2019). Addition of terpenoids to pear ester plus acetic acid increases catches of codling moth (Lepidoptera: Tortricidae). Journal of Applied Entomology, 143, 942–947. 10.1111/jen.12682 DOI
Knight, A. L. , Stelinski, L. L. , Hebert, V. , Gut, L. , Light, D. , & Brunner, J. (2012). Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae). Journal of Applied Entomology, 136, 79–86. 10.1111/j.1439-0418.2011.01633.x DOI
Knudsen, G. K. , Bengtsson, M. , Kobro, S. , Jaastad, G. , Hofsvang, T. , & Witzgall, P. (2008). Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles. Physiological Entomology, 33, 1–6. 10.1111/j.1365-3032.2007.00592.x DOI
Knudsen, G. K. , Norli, H. R. , & Tasin, M. (2017). The ratio between field attractive and background volatiles encodes host‐plant recognition in a specialist moth. Frontiers in Plant Science, 8, 2206 10.3389/fpls.2017.02206 PubMed DOI PMC
Knudsen, G. K. , & Tasin, M. (2015). Spotting the invaders: A monitoring system based on plant volatiles to forecast apple fruit moth attacks in apple orchards. Basic and Applied Ecology, 16, 354–364. 10.1016/j.baae.2015.03.006 DOI
Knudsen, J. T. , Tollsten, L. , & Bergström, L. G. (1993). Floral scents: A checklist of volatile compounds isolated by head‐space techniques. Phytochemistry, 33, 253–280. 10.1016/0031-9422(93)85502-I DOI
Koenig, C. , Hirsh, A. , Bucks, S. , Klinner, C. , Vogel, H. , Shukla, A. , … Grosse‐Wilde, E. (2015). A reference gene set for chemosensory receptor genes of Manduca sexta . Insect Biochemistry and Molecular Biology, 66, 51–63. 10.1016/j.ibmb.2015.09.007 PubMed DOI
Kovanci, O. B. (2015). Co‐application of microencapsulated pear ester and codlemone for mating disruption of Cydia pomonella . Journal of Pest Science, 88, 311–319. 10.1007/s10340-014-0619-x DOI
Krieger, J. , Gondesen, I. , Forstner, M. , Gohl, T. , Dewer, Y. , & Breer, H. (2009). HR11 and HR13 receptor‐expressing neurons are housed together in pheromone‐responsive sensilla trichodea of male Heliothis virescens . Chemical Senses, 34, 469–477. 10.1093/chemse/bjp010 PubMed DOI
Lebreton, S. , Borrero‐Echeverry, F. , Gonzalez, F. , Solum, M. , Wallin, E. , Hedenström, E. , … Witzgall, P. (2017). A Drosophila female pheromone elicits species‐specific long‐range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology, 15, 88 10.1186/s12915-017-0427-x PubMed DOI PMC
Lemfack, M. C. , Gohlke, B. O. , Toguem, S. M. T. , Preissner, S. , Piechulla, B. , & Preissner, R. (2018). mVOC 2.0: A database of microbial volatiles. Nucleic Acids Research, 46, D1261–D1265. 10.1093/nar/gkx1016 PubMed DOI PMC
Li, G. , Du, J. , Li, Y. , & Wu, J. (2015). Identification of putative olfactory genes from the oriental fruit moth Grapholita molesta via an antennal transcriptome analysis. PLoS One, 10(11), e0142193 10.1371/journal.pone.0142193 PubMed DOI PMC
Light, D. M. (2016). Control and monitoring of codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with novel high‐load, low‐density “meso” dispensers of sex pheromone and pear ester. Environmental Entomology, 45, 700–707. 10.1093/ee/nvw017 PubMed DOI
Light, D. M. , & Beck, J. J. (2012). Behavior of codling moth (Lepidoptera: Tortricidae) neonate larvae on surfaces treated with microencapsulated pear ester. Environmental Entomology, 41, 603–611. 10.1603/EN11273 PubMed DOI
Light, D. M. , & Knight, A. (2005). Specificity of codling moth (Lepidoptera: Tortricidae) for the host plant kairomone, ethyl (2E,4Z)‐2,4‐decadienoate: Field bioassays with pome fruit volatiles, analogue, and isomeric compounds. Journal of Agricultural and Food Chemistry, 53, 4046–4053. 10.1021/jf040431r PubMed DOI
Light, D. M. , & Knight, A. L. (2011). Microencapsulated pear ester enhances insecticide efficacy in walnuts for codling moth (Lepidoptera: Tortricidae) and navel orangeworm (Lepidoptera: Pyralidae). Journal of Economic Entomology, 104, 1309–1315. 10.1603/EC11058 PubMed DOI
Light, D. M. , Knight, A. L. , Henrick, C. A. , Rajapaska, D. , Lingren, B. , Dickens, J. C. , … Campbell, B. C. (2001). A pear‐derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften, 88, 333–338. (10.1007/s001140100243) PubMed
Liu, Z. , Smagghe, G. , Lei, Z. , & Wang, J. J. (2016). Identification of male‐and female‐specific olfaction genes in antennae of the Oriental fruit fly (Bactrocera dorsalis). PLoS One, 11, e0147783 (10.1371/journal.pone.0147783) PubMed PMC
Ljunggren, J. , Borrero‐Echeverry, F. , Chakraborty, A. , Lindblom, T. U. , Hedenström, E. , Karlsson, M. , … Bengtsson, M. (2019). Yeast volatomes differentially effect larval feeding in an insect herbivore. Appl Environm Microbiol, 85, e01761–e1819. 10.1128/AEM.01761-19 PubMed DOI PMC
Longing, S. D. , Peterson, E. M. , Jewett, C. T. , Rendon, B. M. , Discua, S. A. , Wooten, K. J. , … McIntyre, N. E. (2020). Exposure of foraging bees (Hymenoptera) to neonicotinoids in the U.S. southern high plains. Environmental Entomology. 10.1093/ee/nvaa003 PubMed DOI
Lu, P. F. , Wang, R. , Wang, C. Z. , Luo, Y. Q. , & Qiao, H. L. (2015). Sexual differences in electrophysiological and behavioral responses of Cydia molesta to peach and pear volatiles. Entomologia Experimentalis Et Applicata, 157, 279–290. 10.1111/eea.12362 DOI
McBride, C. S. , & Arguello, J. R. (2007). Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics, 177, 1395–1416. 10.1534/genetics.107.078683 PubMed DOI PMC
Menuz, K. , Larter, N. K. , Park, J. , & Carlson, J. R. (2014). An RNA‐seq screen of the Drosophila antenna identifies a transporter necessary for ammonia detection. PLoS Genetics, 10, e1004810 10.1371/journal.pgen.1004810 PubMed DOI PMC
Muench, D. , & Galizia, C. G. (2016). DoOR 2.0‐Comprehensive mapping of Drosophila melanogaster odorant responses. Scientific Reports, 6, 21841 10.1038/srep21841 PubMed DOI PMC
Najar‐Rodriguez, A. J. , Galizia, C. G. , Stierle, J. , & Dorn, S. (2010). Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant‐derived volatile mixtures. Journal of Experimental Biology, 213, 3388–3397. 10.1242/jeb.046284 PubMed DOI
Park, K. C. , Withers, T. M. , Suckling, D. M. , & Collaboration, B. B. B. (2015). Identification of olfactory receptor neurons in Uraba lugens (Lepidoptera: Nolidae) and its implications for host range. Journal of Insect Physiology, 78, 33–46. 10.1016/j.jinsphys.2015.04.010 PubMed DOI
Paterson, H. (1978). More evidence against speciation by reinforcement. South African Journal of Science, 74, 369–371.
Phelan, P. L. (1992). Evolution of sex pheromones and the role of assymetric tracking In Roitberg B. D., & Isman M. B. (Eds.), Insect chemical ecology: An evolutionary approach (pp. 265–314). New York, NY: Chapman and Hall.
Porcel, M. , Sjöberg, P. , Swiergiel, W. , Dinwiddie, R. , Rämert, B. , & Tasin, M. (2015). Mating disruption of Spilonota ocellana and other apple orchard tortricids using a multispecies reservoir dispenser. Pest Management Science, 71, 562–570. 10.1002/ps.3844 PubMed DOI
Ramdya, P. , & Benton, R. (2010). Evolving olfactory systems on the fly. Trends in Genetics, 26, 307–316. 10.1016/j.tig.2010.04.004 PubMed DOI
Rauscher, S. , Arn, H. , & Guerin, P. (1984). Effects of dodecyl acetate and Z‐10‐tridecenyl acetate on attraction of Eupoecilia ambiguella males to the main sex pheromone component, Z‐9‐Dodecenyl acetate. Journal of Chemical Ecology, 10, 253–264. 10.1007/BF00987853 PubMed DOI
Reddy, G. V. , & Guerrero, A. (2004). Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science, 9, 253–261. 10.1016/j.tplants.2004.03.009 PubMed DOI
Reddy, G. V. , & Guerrero, A. (2010). New pheromones and insect control strategies. Vitamins and Hormones, 83, 493–519. 10.1016/S0083-6729(10)83020-1 PubMed DOI
Regier, J. C. , Brown, J. W. , Mitter, C. , Baixeras, J. , Cho, S. , Cummings, M. P. , & Zwick, A. (2012). A molecular phylogeny for the leafroller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS One, 7, e35574 10.1371/journal.pone.0035574 PubMed DOI PMC
Ridgway, R. L. , Silverstein, R. M. , & Inscoe, M. N. (1990). Behavior‐modifying chemicals for insect management: Applications of pheromones and other attractants. New York, NY: Marcel Dekker.
Robertson, H. M. (2019). Molecular evolution of the major arthropod chemoreceptor gene families. Annual Review of Entomology, 64, 227–242. 10.1146/annurev-ento-020117-043322 PubMed DOI
Rojas, V. , Jimenez, H. , Palma‐Millanao, R. , Gonzalez‐Gonzalez, A. , Machuca, J. , Godoy, R. , … Venthur, H. (2018). Analysis of the grapevine moth Lobesia botrana antennal transcriptome and expression of odorant‐binding and chemosensory proteins. Comparative Biochemistry and Physiology D, 27, 1–12. 10.1016/j.cbd.2018.04.003 PubMed DOI
Rosenthal, G. G. (2017). Mate choice: The evolution of sexual decision making from microbes to humans. Princeton, NJ: Princeton University Press.
Rouyar, A. , Deisig, N. , Dupuy, F. , Limousin, D. , Wycke, M. A. , Renou, M. , & Anton, S. (2015). Unexpected plant odor responses in a moth pheromone system. Frontiers in Physiology, 6, 148 10.3389/fphys.2015.00148 PubMed DOI PMC
Sánchez‐Gracia, A. , Vieira, F. , & Rozas, J. (2009). Molecular evolution of the major chemosensory gene families in insects. Heredity, 103, 208–216. 10.1038/hdy.2009.55 PubMed DOI
Schmidt, S. , Anfora, G. , Ioriatti, C. , Germinara, G. S. , Rotundo, G. , & De Cristofaro, A. (2007). Biological activity of ethyl (E, Z)‐2,4‐decadienoate on different tortricid species: Electrophysiological responses and field tests. Environmental Entomology, 36, 1025–1031. 10.1603/0046-225X(2007)36[1025:BAOEEO]2.0.CO;2 PubMed DOI
Schmidt, S. , Tomasi, C. , Pasqualini, E. , & Ioriatti, C. (2008). The biological efficacy of pear ester on the activity of granulosis virus for codling moth. Journal of Pest Science, 81, 29–34. 10.1007/s10340-007-0181-x DOI
Schorkopf, D. L. P. , Molnar, B. P. , Solum, M. , Larsson, M. C. , Millar, J. G. , Karpati, Z. , & Dekker, T. (2019). False positives from impurities result in incorrect functional characterization of receptors in chemosensory studies. Progress in Neurobiology, 181, 101661 10.1016/j.pneurobio.2019.101661 PubMed DOI
Seibold, S. , Gossner, M. M. , Simons, N. K. , Blüthgen, N. , Müller, J. , Ambarli, D. , … Weisser, W. W. (2019). Arthropod decline in grasslands and forests is associated with landscape‐level drivers. Nature, 574, 671–674. 10.1038/s41586-019-1684-3 PubMed DOI
Steinwender, B. , Thrimawithana, A. H. , Crowhurst, R. N. , & Newcomb, R. D. (2015). Pheromone receptor evolution in the cryptic leafroller species, Ctenopseustis obliquana and C. herana . Journal of Molecular Evolution, 80, 42–56. 10.1007/s00239-014-9650-z PubMed DOI
Stenberg, J. A. , Heil, M. , Åhman, I. , & Björkman, C. (2015). Optimizing crops for biocontrol of pests and disease. Trends in Plant Science, 20, 698–712. 10.1016/j.tplants.2015.08.007 PubMed DOI
Suckling, D. M. , Stringer, L. D. , Stephens, A. E. , Woods, B. , Williams, D. G. , Baker, G. , & El‐Sayed, A. M. (2014). From integrated pest management to integrated pest eradication: Technologies and future needs. Pest Management Science, 70, 179–189. 10.1002/ps.3670 PubMed DOI
Sutherland, O. R. W. , & Hutchins, R. F. N. (1972). α‐Farnesene, a natural attractant for codling moth larvae. Nature, 239, 170.
Tamiru, A. , Khan, Z. R. , & Bruce, T. J. (2015). New directions for improving crop resistance to insects by breeding for egg induced defence. Current Opinion in Insect Science, 9, 51–55. 10.1016/j.cois.2015.02.011 PubMed DOI
Tamura, K. , Stecher, G. , Peterson, D. , Filipski, A. , & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC
Tasin, M. , Bäckman, A.‐C. , Anfora, G. , Carlin, S. , Ioriatti, C. , & Witzgall, P. (2010). Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chemical Senses, 35, 57–64. 10.1093/chemse/bjp082 PubMed DOI
Tian, Z. , Sun, L. , Li, Y. , Quan, L. , Zhang, H. , Yan, W. , … Qiu, G. (2018). Antennal transcriptome analysis of the chemosensory gene families in Carposina sasakii (Lepidoptera: Carposinidae). BMC Genomics, 19, 544 10.1186/s12864-018-4900-x PubMed DOI PMC
Trona, F. , Anfora, G. , Balkenius, A. , Bengtsson, M. , Tasin, M. , Knight, A. , … Ignell, R. (2013). Neural coding merges sex and habitat chemosensory signals in an insect herbivore. Proceedings of the Royal Society B, 280, 20130267 10.1098/rspb.2013.0267 PubMed DOI PMC
Trona, F. , Anfora, G. , Bengtsson, M. , Witzgall, P. , & Ignell, R. (2010). Coding and interaction of sex pheromone and plant volatile signals in the antennal lobe of the codling moth Cydia pomonella . Journal of Experimental Biology, 213, 4291–4303. 10.1242/jeb.047365 PubMed DOI
Varela, N. , Avilla, J. , Gemeno, C. , & Anton, S. (2011). Ordinary glomeruli in the antennal lobe of male and female tortricid moth Grapholita molesta (Busck)(Lepidoptera: Tortricidae) process sex pheromone and host‐plant volatiles. Journal of Experimental Biology, 214, 637–645. 10.1242/jeb.047316 PubMed DOI
Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology, 65, 457–480. 10.1146/annurev-ento-011019-025151 PubMed DOI
Walker, W. B. , Gonzalez, F. , Garczynski, S. F. , & Witzgall, P. (2016). The chemosensory receptors of codling moth Cydia pomonella ‐ expression in larvae and adults. Scientific Reports, 6, 23518 10.1038/srep23518 PubMed DOI PMC
Wan, F. , Yin, C. , Tang, R. , Chen, M. , Wu, Q. , Huang, C. , … Wang, G. (2019). A chromosome‐level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nature Communications, 10, 1–14. 10.1038/s41467-019-12175-9 PubMed DOI PMC
Witzgall, P. , Bengtsson, M. , Buser, H. R. , Chambon, P. J. , Priesner, E. , Wildbolz, T. , & Arn, H. (1991). Sex pheromones of Spilonota ocellana and Spilonota laricana. Entomologia Experimentalis et Applicata, 60, 219–223. 10.1111/j.1570-7458.1991.tb01541.x DOI
Witzgall, P. , Bengtsson, M. , Rauscher, S. , Liblikas, I. , Bäckman, A.‐C. , Coracini, M. , … Löfqvist, J. (2001). Identification of further sex pheromone synergists in the codling moth, Cydia pomonella . Entomologia Experimentalis Et Applicata, 101, 131–141. 10.1046/j.1570-7458.2001.00898.x DOI
Witzgall, P. , Bengtsson, M. , Unelius, C. R. , & Löfqvist, J. (1993). Attraction of pea moth Cydia nigricana F. (Lepidoptera: Tortricidae) to female sex pheromone (E, E)‐8,10‐dodecadien‐1‐yl acetate, is inhibited by geometric isomers (E, Z), (Z, E) and (Z, Z). Journal of Chemical Ecology, 19, 1917–1928. 10.1007/BF00983796 PubMed DOI
Witzgall, P. , Chambon, J.‐P. , Bengtsson, M. , Unelius, C. R. , Appelgren, M. , Makranczy, G. , … Löfqvist, J. (1996). Sex pheromones and attractants in the Eucosmini and Grapholitini (Lepidoptera, Tortricidae). Chemoecology, 7, 13–23. 10.1007/BF01240633 DOI
Witzgall, P. , Kirsch, P. , & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36, 80–100. 10.1007/s10886-009-9737-y PubMed DOI
Witzgall, P. , Stelinski, L. , Gut, L. , & Thomson, D. (2008). Codling moth management and chemical ecology. Annual Review of Entomology, 53, 503–522. 10.1146/annurev.ento.53.103106.093323 PubMed DOI
Witzgall, P. , Trematerra, P. , Liblikas, I. , Bengtsson, M. , & Unelius, C. R. (2010). Pheromone communication channels in tortricid moths: Lower specificity of alcohol vs. acetate geometric isomer blends. Bulletin of Entomological Research, 100, 225–230. 10.1017/S0007485309990186 PubMed DOI
Yamamuro, M. , Komuro, T. , Kamiya, H. , Kato, T. , Hasegawa, H. , & Kameda, Y. (2019). Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science, 366, 620–623. 10.1126/science.aax3442 PubMed DOI
Yang, S. , Cao, D. , Wang, G. , & Liu, Y. (2017). Identification of genes involved in chemoreception in Plutella xyllostella by antennal transcriptome analysis. Scientific Reports, 7, 1–16. 10.1038/s41598-017-11646-7 PubMed DOI PMC
Zeng, F.‐F. , Zhao, Z.‐F. , Yan, M.‐J. , Zhou, W. , Zhang, Z. , Zhang, A. , … Wang, M.‐Q. (2015). Identification and comparative expression profiles of chemoreception genes revealed from major chemoreception organs of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). PLoS One, 10, e0144267 10.1371/journal.pone.0144267 PubMed DOI PMC
Zhang, D. D. , & Löfstedt, C. (2015). Moth pheromone receptors: Gene sequences, function, and evolution. Frontiers in Ecology and Evolution, 3, 105 10.3389/fevo.2015.00105 DOI
Zhang, J. , Wang, B. , Dong, S. , Cao, D. , Dong, J. , Walker, W. B. , … Wang, G. (2015). Antennal transcriptome analysis and comparison of chemosensory gene families in two closely related noctuidae moths, Helicoverpa armigera and H. assulta . PLoS One, 10, e0117054 10.1371/journal.pone.0117054 PubMed DOI PMC
Zhang, S.‐F. , Liu, H.‐H. , Kong, X.‐B. , Wang, H.‐B. , Liu, F. , & Zhang, Z. (2017). Identification and expression profiling of chemosensory genes in Dendrolimus punctatus Walker. Frontiers in Physiology, 8, 471 10.3389/fphys.2017.00471 PubMed DOI PMC
Zhang, S. , Zhang, Z. , Wang, H. , & Kong, X. (2014). Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae). Insect Biochemistry and Molecular Biology, 52, 69–81. 10.1016/j.ibmb.2014.06.006 PubMed DOI
Zhang, Y.‐N. , Jin, J.‐Y. , Jin, R. , Xia, Y.‐H. , Zhou, J.‐J. , Deng, J.‐Y. , & Dong, S.‐L. (2013). Differential expression patterns in chemosensory and non‐chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker). PLoS One, 8, e69715 10.1371/journal.pone.0069715 PubMed DOI PMC