Exploring the potential of fungal arylacetonitrilases in mandelic acid synthesis
Jazyk angličtina Země Švýcarsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aminohydrolasy chemie genetika metabolismus MeSH
- Arthrodermataceae enzymologie MeSH
- Aspergillus niger enzymologie MeSH
- druhová specificita MeSH
- fungální proteiny chemie genetika metabolismus MeSH
- fylogeneze MeSH
- koncentrace vodíkových iontů MeSH
- kyseliny mandlové metabolismus MeSH
- Nectria enzymologie MeSH
- Neurospora crassa enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminohydrolasy MeSH
- fungální proteiny MeSH
- kyseliny mandlové MeSH
- mandelic acid MeSH Prohlížeč
The application of arylacetonitrilases from filamentous fungi to the hydrolysis of high concentrations of (R,S)-mandelonitrile (100-500 mM) was demonstrated for the first time. Escherichia coli strains expressing the corresponding genes were used as whole-cell catalysts. Nitrilases from Aspergillus niger, Neurospora crassa, Nectria haematococca, and Arthroderma benhamiae (enzymes NitAn, NitNc, NitNh, and NitAb, respectively) exhibited different degrees of enantio- and chemoselectivity (amide formation). Their enantio- and chemoselectivity was increased by increasing pH (from 8 to 9-10) and adding 4-10% (v/v) toluene as the cosolvent. NitAn and NitNc were able to convert an up to 500 mM substrate in batch mode. NitAn formed a very low amount of the by-product, amide (<1% of the total product). This enzyme produced up to >70 g/L of (R)-mandelic acid (e.e. 94.5-95.6%) in batch or fed-batch mode. Its volumetric productivities were the highest in batch mode [571 ± 32 g/(L d)] and its catalyst productivities in fed-batch mode (39.9 ± 2.5 g/g of dcw). NitAb hydrolyzed both enantiomers of 100 mM (R,S)-mandelonitrile at pH 5.0 and is therefore promising for the enantioretentive transformation of (S)-mandelonitrile. Sequence analysis suggested that fungal arylacetonitrilases with similar properties (enantioselectivity, chemoselectivity) were clustered together.
Zobrazit více v PubMed
J Biotechnol. 2009 Aug 10;143(1):17-26 PubMed
Biotechnol Lett. 2011 Feb;33(2):309-12 PubMed
Appl Environ Microbiol. 2004 Apr;70(4):2429-36 PubMed
Appl Microbiol Biotechnol. 2012 Feb;93(4):1553-61 PubMed
Appl Microbiol Biotechnol. 2008 Aug;80(1):87-97 PubMed
J Biotechnol. 2008 Feb 1;133(3):327-33 PubMed
Appl Environ Microbiol. 2003 Aug;69(8):4359-66 PubMed
Appl Microbiol Biotechnol. 2014 Feb;98 (4):1595-607 PubMed
J Biotechnol. 2013 Sep 20;167(4):433-40 PubMed
Mol Biotechnol. 2009 Jan;41(1):35-41 PubMed
Mol Biotechnol. 2013 Jul;54(3):996-1003 PubMed
BMC Biotechnol. 2013 Feb 18;13:14 PubMed
Appl Environ Microbiol. 2010 Jun;76(11):3668-74 PubMed
J Am Chem Soc. 2002 Aug 7;124(31):9024-5 PubMed
J Agric Food Chem. 2014 May 21;62(20):4685-94 PubMed
Biotechnol Adv. 2009 Nov-Dec;27(6):661-70 PubMed
J Appl Microbiol. 2003;95(6):1161-74 PubMed
J Biotechnol. 2007 May 10;129(4):645-50 PubMed
Appl Microbiol Biotechnol. 2012 Jul;95(1):91-9 PubMed
Angew Chem Int Ed Engl. 2004 Feb 6;43(7):788-824 PubMed
J Biotechnol. 2011 Mar 10;152(1-2):24-9 PubMed