Interstitial Telomeric Repeats Are Rare in Turtles
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32560114
PubMed Central
PMC7348932
DOI
10.3390/genes11060657
PII: genes11060657
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, ITRs, ITSs, evolution, in situ hybridization, interstitial telomeric repeats, interstitial telomeric sequences, karyotype, telomeres, turtles,
- MeSH
- centromera genetika MeSH
- hadi genetika MeSH
- hybridizace in situ fluorescenční MeSH
- ještěři genetika MeSH
- karyotyp MeSH
- pohlavní chromozomy genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- telomery genetika MeSH
- želvy genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.
Allwetterzoo Münster D48161 Münster Germany
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
landsnail org 14200 Prague Czech Republic
Museum of Zoology Senckenberg Dresden 01109 Dresden Germany
Zobrazit více v PubMed
Blackburn E.H. Switching and signaling at the telomere. Cell. 2001;106:661–673. doi: 10.1016/S0092-8674(01)00492-5. PubMed DOI
Moyzis R.K., Buckingham J.M., Crams L.S., Dani M., Larry L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 1988;85:6622–6626. doi: 10.1073/pnas.85.18.6622. PubMed DOI PMC
Meyne J., Baker R.J., Hobart H.H., Hsu T.C., Ryder O.A., Ward O.G., Wiley J.E., Wurster-Hill D.H., Yates T.L., Moyzis R.K. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990;99:3–10. doi: 10.1007/BF01737283. PubMed DOI
O’Sullivan R.J., Karlseder J. Telomeres: Protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 2010;11:171–181. doi: 10.1038/nrm2848. PubMed DOI PMC
Chiodi I., Belgiovine C., Mondello C. Telomerase and telomeric proteins: A life beyond telomeres. In: Gagnon A.N., editor. Telomerase: Composition, Functions and Clinical Implications. Nova Science Publishers, Inc.; Hauppauge, NY, USA: 2010. pp. 35–58.
Zhao Z., Pan X., Liu L., Liu N. Telomere length maintenance, shortening, and lengthening. J. Cell. Physiol. 2014;229:1323–1329. doi: 10.1002/jcp.24537. PubMed DOI
Jafri M.A., Ansari S.A., Alqahtani M.H., Shay J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8:69. doi: 10.1186/s13073-016-0324-x. PubMed DOI PMC
Cong Y.S., Wright W.E., Shay J.W. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 2002;66:407–425. doi: 10.1128/MMBR.66.3.407-425.2002. PubMed DOI PMC
Harley B.C., Futcher B.A., Greider W.C. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–460. doi: 10.1038/345458a0. PubMed DOI
Hastie N.D., Dempster M., Dunlop M.G., Thompson A.M., Green D.K., Allshire R.C. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346:866–868. doi: 10.1038/346866a0. PubMed DOI
Lindsey J., McGill N.I., Lindsey L.A., Green D.K., Cooke H.J. In vivo loss of telomeric repeats with age in humans. Mutat. Res. 1991;256:45–48. doi: 10.1016/0921-8734(91)90032-7. PubMed DOI
Hayashi M.T., Cesare A.J., Rivera T., Karlseder J. Cell death during crisis is mediated by mitotic telomere deprotection. Nature. 2015;522:492–496. doi: 10.1038/nature14513. PubMed DOI PMC
Bolzán A.D., Bianchi M.S. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat. Res. 2006;612:189–214. doi: 10.1016/j.mrrev.2005.12.003. PubMed DOI
Lin K.W., Yan J. Endings in the middle: Current knowledge of interstitial telomeric sequences. Mutat. Res. 2008;658:95–110. doi: 10.1016/j.mrrev.2007.08.006. PubMed DOI
Ruiz-Herrera A., Nergadze S.G., Santagostino M., Giulotto E. Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet. Genome Res. 2008;122:219–228. doi: 10.1159/000167807. PubMed DOI
Azzalin C.M., Mucciolo E., Bertoni L., Giuliotto E. Fluorescence in situ hybridization with a synthetic (T2AG3)n polynucleotide detects several intrachromosomal telomere-like repeats on human chromosomes. Cytogenet. Genome Res. 1997;78:112–115. doi: 10.1159/000134640. PubMed DOI
Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI
Santagostino M., Piras F.M., Cappelletti E., Del Giudice S., Semino O., Nergadze S.G., Giulotto E. Insertion of telomeric repeats in the human and horse genomes: An evolutionary perspective. Int. J. Mol. Sci. 2020;21:2838. doi: 10.3390/ijms21082838. PubMed DOI PMC
Azzalin C.M., Nergadze S.G., Giulotto E. Human intrachromosomal telomeric-like repeats: Sequence organization and mechanisms of origin. Chromosoma. 2001;110:75–82. doi: 10.1007/s004120100135. PubMed DOI
Faravelli M., Moralli D., Bertoni L., Attolini C., Chernova O., Raimondi E., Giulotto E. Two extended arrays of a satellite DNA sequence at the centromere and at the short-arm telomere of Chinese hamster chromosome. Cytogenet. Genome Res. 1998;83:281–286. doi: 10.1159/000015171. PubMed DOI
Faravelli M., Azzalin C.M., Bertoni L., Chernova O., Attolini C., Mondello C., Giulotto E. Molecular organization of internal telomeric sequences in Chinese hamster chromosomes. Gene. 2002;283:11–16. doi: 10.1016/S0378-1119(01)00877-0. PubMed DOI
Ruiz-Herrera A., García F., Azzalin C., Giulotto E., Egozcue J., Ponsà M., Garcia M. Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution. Hum. Genet. 2002;110:578–586. doi: 10.1007/s00439-002-0730-6. PubMed DOI
Ruiz-Herrera A., García F., Giulotto E., Attolini C., Egozcue J., Ponsà M., Garcia M. Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates. Cytogenet. Genome Res. 2005;108:234–247. doi: 10.1159/000080822. PubMed DOI
Nergadze S.G., Rocchi M., Azzalin C.M., Mondello C., Giulotto E. Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res. 2004;14:1704–1710. doi: 10.1101/gr.2778904. PubMed DOI PMC
Nergadze S.G., Santagostino M.A., Salzano A., Mondello C., Giulotto E. Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biol. 2007;8:R260. doi: 10.1186/gb-2007-8-12-r260. PubMed DOI PMC
Camats N., Ruiz-Herrera A., Parrilla J.J., Acien M., Payá P., Giulotto E., Egozcue J., García F., Garcia M. Genomic instability in rat: Breakpoints induced by ionising radiation and interstitial telomeric-like sequences. Mutat. Res. 2006;595:156–166. doi: 10.1016/j.mrfmmm.2005.11.002. PubMed DOI
Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI
Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Mazzoleni S., Schillaci O., Sineo L., Dumas F. Distribution of interstitial telomeric sequences in primates and the pygmy tree shrew (Scandentia) Cytogenet. Genome Res. 2017;151:141–150. doi: 10.1159/000467634. PubMed DOI
Milioto V., Vlah S., Mazzoleni S., Rovatsos M., Dumas F. Chromosomal localization of 18S-28S rDNA and (TTAGGG)n sequences in two South African dormice of the genus Graphiurus (Rodentia: Gliridae) Cytogenet. Genome Res. 2019;158:145–151. doi: 10.1159/000500985. PubMed DOI
Swier V.J., Anwarali Khan F.A., Baker R.J. Do time, heterochromatin, NORs, or chromosomal rearrangements correlate with distribution of interstitial telomeric repeats in Sigmodon (cotton rats)? J. Hered. 2012;103:493–502. doi: 10.1093/jhered/ess029. PubMed DOI
Nagamachi C.Y., Pieczarka J.C., O’Brien P.C.M., Pinto J.A., Malcher S.M., Pereira A.L., das Dores Rissino J., Mendes-Oliveira A.C., Rossi R.V., Ferguson-Smith M.A. FISH with whole chromosome and telomeric probes demonstrates huge karyotypic reorganization with ITS between two species of Oryzomyini (Sigmodontinae, Rodentia): Hylaeamys megacephalus probes on Cerradomys langguthi karyotype. Chromosome Res. 2013;21:107–119. doi: 10.1007/s10577-013-9341-4. PubMed DOI
Wiley J.E., Meyne J., Little M.L., Stout J.C. Interstitial hybridization sites of the (TTAGGG)n telomeric sequence on the chromosomes of some North American hylid frogs. Cytogenet. Cell Genet. 1992;61:55–57. doi: 10.1159/000133368. PubMed DOI
Park V.M., Gustashaw K.M., Wathen T.M. The presence of interstitial telomeric sequences in constitutional chromosome abnormalities. Am. J. Hum. Genet. 1992;50:914–923. PubMed PMC
Rossi E., Floridia G., Casali M., Danesino C., Chiumello G., Bernardi F., Magnani I., Papi L., Mura M., Zuffardi O. Types, stability, and phenotypic consequences of chromosome rearrangements leading to interstitial telomeric sequences. J. Med. Genet. 1993;30:926–931. doi: 10.1136/jmg.30.11.926. PubMed DOI PMC
Vermeesch J.R., Petit P., Speleman F., Devriendt K., Fryns J.P., Marynen P. Interstitial telomeric sequences at the junction site of a jumping translocation. Hum. Genet. 1997;99:735–737. doi: 10.1007/s004390050440. PubMed DOI
Melek M., Shippen D.E. Chromosome healing: Spontaneous and programmed de novo telomere formation by telomerase. BioEssays. 1996;18:301–308. doi: 10.1002/bies.950180408. PubMed DOI
Shay J.R., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI
Nanda I., Schrama D., Feichtinger W., Haaf T., Schartl M., Schmid M. Distribution of telomeric (TTAGGG)n sequences in avian chromosomes. Chromosoma. 2002;111:215–227. doi: 10.1007/s00412-002-0206-4. PubMed DOI
Rovatsos M., Marchal J.A., Romero-Fernández I., Cano-Linares M., Fernández F.J., Giagia-Athanasopoulou E.B., Sánchez A. Molecular and physical characterization of the complex pericentromeric heterochromatin of the vole species Microtus thomasi. Cytogenet. Genome Res. 2014;144:131–141. doi: 10.1159/000368648. PubMed DOI
Ocalewicz K. Telomeres in fishes. Cytogenet. Genome Res. 2013;141:114–125. doi: 10.1159/000354278. PubMed DOI
Bruschi D.P., Rivera M., Lima A.P., Zúñiga A.B., Recco-Pimentel S.M. Interstitial telomeric sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura) Mol. Cytogenet. 2014;7:22. doi: 10.1186/1755-8166-7-22. PubMed DOI PMC
Schmid M., Steinlein C. Chromosome Banding in Amphibia. XXXIV. Intrachromosomal telomeric DNA sequences in Anura. Cytogenet. Genome Res. 2016;148:211–226. doi: 10.1159/000446298. PubMed DOI
De Oliveira T.D., Kretschmer R., Bertocchi N.A., Degrandi T.M., de Oliveira E.H.C., Cioffi M.B., Garnero A.D.V., Gunski R.J. Genomic organization of repetitive DNA in woodpeckers (Aves, Piciformes): Implications for karyotype and ZW sex chromosome differentiation. PLoS ONE. 2017;12:e0169987. doi: 10.1371/journal.pone.0169987. PubMed DOI PMC
Srikulnath K., Azad B., Singchat W., Ezaz T. Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS ONE. 2019;14:e0212683. doi: 10.1371/journal.pone.0212683. PubMed DOI PMC
Zattera M.L., Lima L., Duarte I., de Sousa D.Y. Cytogenetics chromosome spreading of the (TTAGGG)n repeats in the Pipa carvalhoi Miranda-Ribeiro, 1937 (Pipidae, Anura) karyotype. Comp. Cytogenet. 2019;13:297–309. doi: 10.3897/CompCytogen.v13i3.35524. PubMed DOI PMC
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): Differentiation of sex and neo-sex chromosomes. Sci. Rep. 2015;5:13196. doi: 10.1038/srep13196. PubMed DOI PMC
Rovatsos M., Johnson Pokorná M., Kratochvíl L. Differentiation of sex chromosomes and karyotype characterisation in the dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae) Cytogenet. Genome Res. 2015;147:48–54. doi: 10.1159/000441646. PubMed DOI
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Mixed-up sex chromosomes: Identification of sex chromosomes in the X1X1X2X2/X1X2Y system of the legless lizards of the genus Lialis (Squamata: Gekkota: Pygopodidae) Cytogenet. Genome Res. 2016;149:282–289. doi: 10.1159/000450734. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Sánchez Baca A., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC
Rovatsos M., Altmanová M., Johnson Pokorná M., Augstenová B., Kratochvíl L. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes. J. Zool. Syst. Evol. Res. 2018;56:117–125. doi: 10.1111/jzs.12180. DOI
Rovatsos M., Altmanová M., Augstenová B., Mazzoleni S., Velenský P., Kratochvíl L. ZZ/ZW sex determination with multiple neo-sex chromosomes is common in Madagascan chameleons of the genus Furcifer. Genes. 2019;10:1020. doi: 10.3390/genes10121020. PubMed DOI PMC
Matsubara K., Uno Y., Srikulnath K., Matsuda Y., Miller E., Olsson M. No interstitial telomeres on autosomes but remarkable amplification of telomeric repeats on the W sex chromosome in the sand lizard (Lacerta agilis) J. Hered. 2015;106:753–757. doi: 10.1093/jhered/esv083. PubMed DOI
Srikulnath K., Uno Y., Nishida C., Ota H., Matsuda Y. Karyotype reorganization in the Hokou gecko (Gekko hokouensis, Gekkonidae): The process of microchromosome disappearance in Gekkota. PloS ONE. 2015;10:e0134829. doi: 10.1371/journal.pone.0134829. PubMed DOI PMC
Viana P.F., Ribeiro L.B., Souza G.M., Chalkidis H.D.M., Gross M.C., Feldberg E. Is the karyotype of neotropical boid snakes really conserved? Cytotaxonomy, chromosomal rearrangements and karyotype organization in the Boidae family. PLoS ONE. 2016;11:e0160274. doi: 10.1371/journal.pone.0160274. PubMed DOI PMC
Viana P.F., Ezaz T., Cioffi M.D.B., Almeida B.J., Feldberg E. Evolutionary insights of the ZW sex chromosomes in snakes: A new chapter added by the Amazonian puffing snakes of the genus Spilotes. Genes. 2019;10:288. doi: 10.3390/genes10040288. PubMed DOI PMC
Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI
Giovannotti M., Nisi Cerioni P., Slimani T., Splendiani A., Paoletti A., Fawzi A., Olmo E., Caputo Barucchi V. Cytogenetic characterization of a population of Acanthodactylus lineomaculatus Duméril and Bibron, 1839 (Reptilia, Lacertidae), from Southwestern Morocco and insights into sex chromosome evolution. Cytogenet. Genome Res. 2017;153:86–95. doi: 10.1159/000484533. PubMed DOI
Giovannotti M., Nisi Cerioni P., Rojo V., Olmo E., Slimani T., Splendiani A., Caputo Barucchi V. Characterization of a satellite DNA in the genera Lacerta and Timon (Reptilia, Lacertidae) and its role in the differentiation of the W chromosome. J. Exp. Zool. B Mol. Dev. Evol. 2018;330:83–95. doi: 10.1002/jez.b.22790. PubMed DOI
Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC
Augstenová B., Mazzoleni S., Kostmann A., Altmanová M., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis did not reveal differentiated sex chromosomes in ten species of boas and pythons (Reptilia: Serpentes) Genes. 2019;10:934. doi: 10.3390/genes10110934. PubMed DOI PMC
Singchat W., O’Connor R.E., Tawichasri P., Suntronpong A., Sillapaprayoon S., Suntrarachun S., Muangmai N., Baicharoen S., Peyachoknagul S., Chanhome L., et al. Chromosome map of the Siamese cobra: Did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution? BMC Genom. 2018;19:939. doi: 10.1186/s12864-018-5293-6. PubMed DOI PMC
Da Silva M.J., de Araújo Vieira A.P., Galvão Cipriano F.M., dos Santos Cândido M.R., de Oliveira E.H.C., Gimenez Pinheiro T., da Silva E.L. The karyotype of Salvator merianae (Squamata, Teiidae): Analyses by classical and molecular cytogenetic techniques. Cytogenet. Genome Res. 2020;160:94–99. doi: 10.1159/000506140. PubMed DOI
Sidhom M., Said K., Chatti N., Guarino F.M., Odierna G., Petraccioli A., Picariello O., Mezzasalma M. Karyological characterization of the common chameleon (Chamaeleo chamaeleon) provides insights on the evolution and diversification of sex chromosomes in Chamaeleonidae. Zoology. 2020:125738. doi: 10.1016/j.zool.2019.125738. in press. PubMed DOI
Kawagoshi T., Nishida C., Ota H., Kumazawa Y., Endo H., Matsuda Y. Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia) Chromosome Res. 2008;16:1119–1132. doi: 10.1007/s10577-008-1263-1. PubMed DOI
Nishida C., Ishijima J., Kosaka A., Tanabe H., Habermann F.A., Griffin D.K., Matsuda Y. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Res. 2008;16:171–181. doi: 10.1007/s10577-007-1210-6. PubMed DOI
Seibold-Torres C., Owens E., Chowdhary R., Ferguson-Smith M.A., Tizard I., Raudsepp T. Comparative cytogenetics of the Congo African grey parrot (Psittacus erithacus) Cytogenet. Genome Res. 2015;147:144–153. doi: 10.1159/000444136. PubMed DOI
Liangouzov I.A., Derjusheva S.E., Saifitdinova A.F., Malykh A.G., Gaginskaya E.R. Monomers of a satellite DNA sequence of chaffinch (Fringilla coelebs L., Aves: Passeriformes) contain short clusters of the TTAGGG repeat. Russ. J. Genet. 2002;38:1359–1364. doi: 10.1023/A:1021679520236. PubMed DOI
Derjusheva S., Kurganova A., Habermann F., Gaginskaya E. High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds. Chromosome Res. 2004;12:715–723. doi: 10.1023/B:CHRO.0000045779.50641.00. PubMed DOI
Uetz P., Freed P., Hošek J. The Reptile Database. [(accessed on 13 April 2020)]; Available online: http://www.reptile-database.org.
Vargas-Ramírez M., Caballero S., Morales-Betancourt M.A., Lasso C.A., Amaya L., Martínez J.G., das Neves Silvia Viana M., Vogt R.C., Farias I.P., Hrbek T., et al. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 2020;148:106823. PubMed
Martinez P.A., Boeris J.M., Sánchez J., Pastori M.C., Bolzán A.D., Ledesma M.A. Karyotypic characterization of Trachemys dorbigni (Testudines: Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudines: Testudinidae), two species of cryptodiran turtles from Argentina. Genetica. 2009;137:277–283. doi: 10.1007/s10709-009-9377-8. PubMed DOI
Badenhorst D., Hillier L.D., Literman R., Montiel E.E., Radhakrishnan S., Shen Y., Minx P., Janes D.E., Warren W.C., Edwards S.V., et al. Physical mapping and refinement of the painted turtle genome (Chrysemys picta) inform amniote genome evolution and challenge turtle-bird chromosomal conservation. Genome Biol. Evol. 2013;7:2038–2050. doi: 10.1093/gbe/evv119. PubMed DOI PMC
Ventura K., Moreira C.N., Moretti R., Yonenaga-Yassuda Y., Rodrigues M.T. The lowest diploid number in Testudines: Banding patterns, telomeric and 45s rDNA FISH in Peltocephalus dumerilianus, 2n = 26 and FN = 52 (Pleurodira, Podocnemididae) Genet. Mol. Biol. 2014;37:61–63. doi: 10.1590/S1415-47572014000100011. PubMed DOI PMC
Sánchez J., Alcalde L., Bolzán A.D. First evidence of chromosomal variation within Chelonoidis chilensis (Testudines: Testudinidae) Herpetol. J. 2015;25:83–89.
Montiel E.E., Badenhorst D., Lee L.S., Literman R., Trifonov V., Valenzuela N. Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to amphibian autosomes. Cytogenet. Genome Res. 2016;148:292–304. doi: 10.1159/000447478. PubMed DOI
Noronha R.C.R., Barros L.M.R., Araújo R.E.F., Marques D.F., Nagamachi C.Y., Martins C., Pieczarka J.C. New insights of karyoevolution in the Amazonian turtles Podocnemis expansa and Podocnemis unifilis (Testudines, Podocnemidae) Mol. Cytogenet. 2016;9:73. doi: 10.1186/s13039-016-0281-5. PubMed DOI PMC
Cavalcante M.G., Bastos C.E.M.C., Nagamachi C.Y., Pieczarka J.C., Vicari M.R., Noronha R.C.R. Physical mapping of repetitive DNA suggests 2n reduction in Amazon turtles Podocnemis (Testudines: Podocnemididae) PLoS ONE. 2018;13:e0197536. doi: 10.1371/journal.pone.0197536. PubMed DOI PMC
Iannucci A., Svartman M., Bellavita M., Chelazzi G., Stanyon R., Ciofi C. Insights into Emydid turtle cytogenetics: The European pond turtle as a model species. Cytogenet. Genome Res. 2019;157:166–171. doi: 10.1159/000495833. PubMed DOI
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC
Cavalcante M.G., Souza L.F., Vicari M.R., de Bastos C.E.M., de Sousa J.V., Nagamachi C.Y., Pieczarka J.C., Martins C., Noronha R.C.R. Molecular cytogenetics characterization of Rhinoclemmys punctularia (Testudines, Geoemydidae) and description of a Gypsy-H3 association in its genome. Gene. 2020;738:144477. doi: 10.1016/j.gene.2020.144477. PubMed DOI
Olmo E., Signorino G.G. Chromorep: A reptile chromosomes database. [(accessed on 14 April 2020)]; Available online: http://chromorep.univpm.it.
Bickham J.W. Two hundred million year old chromosomes: Deceleration of the rate of karyotypic evolution in turtles. Science. 1981;212:1291–1293. doi: 10.1126/science.212.4500.1291. PubMed DOI
Olmo E. Trends in the evolution of reptilian chromosomes. Integr. Comp. Biol. 2008;48:486–493. doi: 10.1093/icb/icn049. PubMed DOI
Fritz U., Guicking D., Auer M., Sommer R.S., Wink M., Hundsdörfer A.K. Diversity of the Southeast Asian leaf turtle genus Cyclemys: How many leaves on its tree of life? Zool. Scr. 2008;37:367–390. doi: 10.1111/j.1463-6409.2008.00332.x. DOI
Petzold A., Vargas-Ramírez M., Kehlmaier C., Vamberger M., Branch W.R., Du Preez L., Hofmeyr M.D., Schleicher A., Široký P., Fritz U. A revision of African helmeted terrapins (Testudines: Pelomedusidae: Pelomedusa), with descriptions of six new species. Zootaxa. 2014;3795:523–548. doi: 10.11646/zootaxa.3795.5.2. PubMed DOI
Ihlow F., Vamberger M., Flecks M., Hartmann T., Cota M., Makchai S., Meewattana P., Dawson J.E., Kheng L., Rödder D. Integrative taxonomy of Southeast Asian snail-eating turtles (Geoemydidae: Malayemys) reveals a new species and mitochondrial introgression. PLoS ONE. 2016;11:e0153108. doi: 10.1371/journal.pone.0153108. PubMed DOI PMC
Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC
Pereira A.G., Sterli J., Moreira F.R.R., Schrago C.G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 2017;113:59–66. doi: 10.1016/j.ympev.2017.05.008. PubMed DOI
Kehlmaier C., Zhang X., Georges A., Campbell P.D., Thomson S., Fritz U. Mitogenomics of historical type specimens of Australasian turtles: Clarification of taxonomic confusion and old mitochondrial introgression. Sci. Rep. 2019;9:5841. doi: 10.1038/s41598-019-42310-x. PubMed DOI PMC
Maddison W.P., Maddison D.R. Mesquite: A modular system for evolutionary analysis. Version 3.61. [(accessed on 15 March 2020)]; Available online: http://mesquiteproject.org.
Delany M.E., Krupkin A.B., Miller M.M. Organization of telomere sequences in birds: Evidence for arrays of extreme length and for in vivo shortening. Cytogenet. Cell Genet. 2000;90:139–145. doi: 10.1159/000015649. PubMed DOI
Raudsepp T., Houck M.L., O’Brien P.C., Ferguson-Smith M.A., Ryder O.A., Chowdhary B.P. Cytogenetic analysis of California condor (Gymnogyps californianus) chromosomes: Comparison with chicken (Gallus gallus) macrochromosomes. Cytogenet. Genome Res. 2002;98:54–60. doi: 10.1159/000068532. PubMed DOI
Swanberg S.E., Delany M.E. Telomeres in aging: Birds. In: Conn P.M., editor. Handbook of Models for Human Aging. Elsevier Academic Press; Cambridge, MA, USA: 2006. pp. 339–349.
Dos Santos M.S., Kretschmer R., Silva F.A.O., Ledesma M.A., O’Brien P.C.M., Ferguson-Smith M.A., Del Valle Garnero A., de Oliveira E.H.C., Gunski R.J. Intrachromosomal rearrangements in two representatives of the genus Saltator (Thraupidae, Passeriformes) and the occurrence of heteromorphic Z chromosomes. Genetica. 2015;143:535–543. doi: 10.1007/s10709-015-9851-4. PubMed DOI
Kretschmer R., Ferguson-Smith M.A., de Oliveira E.H.C. Karyotype evolution in birds: From conventional staining to chromosome painting. Genes. 2018;9:181. doi: 10.3390/genes9040181. PubMed DOI PMC
Johnson Pokorná M., Rovatsos M., Kratochvíl L. Sex chromosomes and karyotype of the (nearly) mythical creature, the Gila monster, Heloderma suspectum (Squamata: Helodermatidae) PLoS ONE. 2014;9:e104716. PubMed PMC
Stock A.D. Karyological relationships in turtles (Reptilia: Chelonia) Can. J. Genet. Cytol. 1972;14:859–868. doi: 10.1139/g72-105. PubMed DOI
Killebrew F.C. Mitotic chromosomes of turtles. III. The Kinosternidae. Herpetologica. 1975;31:398–403.
Rhodin A.G.J., Iverson J.B., Bour R., Fritz U., Georges A., Shaffer H.B. Turtles of the World: Annotated Checklist and Atlas of Taxonomy. Synon. Distrib. Conserv. Status. 2017;8:9–14.
Rovatsos M., Praschag P., Fritz U., Kratochvíl L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae) Sci. Rep. 2017;7:42150. doi: 10.1038/srep42150. PubMed DOI PMC
Literman R., Radhakrishnan S., Tamplin J., Burke R., Dresser C., Valenzuela N. Development of sexing primers in Glyptemys insculpta and Apalone spinifera turtles uncovers an XX/XY sex-determining system in the critically-endangered bog turtle Glyptemys muhlenbergii. Conserv. Genet. Res. 2017;9:651–658. doi: 10.1007/s12686-017-0711-7. DOI
Bull J.J., Moon R.G., Legler J.M. Male heterogamety in kinosternid turtles (genus Staurotypus) Cytogenet. Genome Res. 1974;13:419–425. doi: 10.1159/000130295. PubMed DOI
Kawagoshi T., Uno Y., Nishida C., Matsuda Y. The Staurotypus turtles and Aves share the same origin of sex chromosomes but evolved different types of heterogametic sex determination. PLoS ONE. 2014;9:e105315. doi: 10.1371/journal.pone.0105315. PubMed DOI PMC
Kawagoshi T., Nishida C., Matsuda Y. The origin and differentiation process of X and Y chromosomes of the black marsh turtle (Siebenrockiella crassicollis, Geoemydidae, Testudines) Chromosome Res. 2012;20:95–110. doi: 10.1007/s10577-011-9267-7. PubMed DOI
Ohno S. Sex Chromosomes and Sex-Linked Genes. Volume 1 Springer; Berlin, Germany: 1967.
Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI
Vicoso B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat. Ecol. Evol. 2019;3:1632–1641. doi: 10.1038/s41559-019-1050-8. PubMed DOI
Cioffi M.B., Kejnovsky E., Bertollo L.A.C. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes. Cytogenet. Genome Res. 2011;132:289–296. doi: 10.1159/000322058. PubMed DOI
Matsubara K., Knopp T., Sarre S.D., Georges A., Ezaz T. Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata) Mol. Cytogenet. 2013;6:60. doi: 10.1186/1755-8166-6-60. PubMed DOI PMC
Scacchetti P.C., Utsunomia R., Pansonato-Alves J.C., da Costa Silva G.J., Vicari M.R., Artoni F.R., Oliveira C., Foresti F. Repetitive DNA sequences and evolution of ZZ/ZW sex chromosomes in Characidium (Teleostei: Characiformes) PLoS ONE. 2015;10:e0137231. doi: 10.1371/journal.pone.0137231. PubMed DOI PMC
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Meles S., Adega F., Guedes-Pinto H., Chaves R. The karyotype and sex chromosomes of Praomys tullbergi (Muridae, Rodentia): A detailed characterization. Micron. 2008;39:559–568. doi: 10.1016/j.micron.2007.07.002. PubMed DOI
Cioffi M.B., Bertollo L.A.C. Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity. 2010;105:554–561. doi: 10.1038/hdy.2010.18. PubMed DOI
Mank J.E. Small but mighty: The evolutionary dynamics of W and Y sex chromosomes. Chromosome Res. 2012;20:21–33. doi: 10.1007/s10577-011-9251-2. PubMed DOI PMC
Deakin J.E., Potter S., O’ Neill R., Ruiz-Herrera A., Cioffi M.B., Eldridge M.D.B., Fukui K., Marshall Graves J.A., Griffin D., Grutzner F. Chromosomics: Bridging the gap between genomes and chromosomes. Genes. 2019;10:627. doi: 10.3390/genes10080627. PubMed DOI PMC
Birchler J.A., Presting G.G. Retrotransposon insertion targeting: A mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes. Dev. 2012;26:638–640. doi: 10.1101/gad.191049.112. PubMed DOI PMC
Alföldi J., Di Palma F., Grabherr M., Williams C., Kong L., Mauceli E., Russell P., Lowe C.B., Glor R.E., Jaffe J.D. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587–591. doi: 10.1038/nature10390. PubMed DOI PMC
Hooper D.M., Price T.D. Chromosomal inversion differences correlate with range overlap in passerine birds. Nat. Ecol. Evol. 2017;1:1526–1534. doi: 10.1038/s41559-017-0284-6. PubMed DOI
Hooper D.M., Griffith S.C., Price T.D. Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. Mol. Ecol. 2018;28:1246–1262. doi: 10.1111/mec.14874. PubMed DOI
Fuller Z.L., Leonard C.J., Young R.E., Schaeffer W., Phadnis N. Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLoS Genet. 2018;14:e1007526. doi: 10.1371/journal.pgen.1007526. PubMed DOI PMC
Kirkpatrick M., Barton N. Chromosome inversion, local adaptation and speciation. Genetics. 2006;173:419–434. doi: 10.1534/genetics.105.047985. PubMed DOI PMC
Wellenreuther M., Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 2018;33:427–440. doi: 10.1016/j.tree.2018.04.002. PubMed DOI
Avise J.C., Bowen B.W., Lamb T., Meylan A.B., Bermingham E. Mitochondrial DNA evolution at a turtle’s place: Evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol. Biol. Evol. 1992;9:457–473. PubMed
Lourenço J.M., Glémin S., Chiari Y., Galtier N. The determinants of molecular substitution process in turtles. J. Evol. Biol. 2013;26:38–50. doi: 10.1111/jeb.12031. PubMed DOI
Shaffer B.H., Minx P., Warren D.E., Shedlock A.M., Thomson R.C., Valenzuela N., Abramyan J., Amemiya C.T., Badenhorst D., Biggar K.K. The western painted turtle genome, a model for evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 2013;14:R28. doi: 10.1186/gb-2013-14-3-r28. PubMed DOI PMC
Fritz U. Schildkröten-Hybriden, 2. Halsberger-Schildkröten (Cryptodira) Herpetofauna. 1995;95:19–34.
Karl S.A., Bowen B.W., Avise J.C. Hybridization among the ancient mariners: Characterization of marine turtle hybrids with molecular genetic assays. J. Hered. 1995;86:262–268. doi: 10.1093/oxfordjournals.jhered.a111579. PubMed DOI
Parham J.F., Simison W.B., Kozak K.H., Feldman C.R., Shi H. New Chinese turtles: Endangered or invalid? A reassessment of two species using mitochondrial DNA, allozyme electrophoresis and known-locality specimens. Anim. Conserv. 2001;4:357–367. doi: 10.1017/S1367943001001421. DOI
Fritz U., Mendau D. Ein Gattungsbastard zweier südostasiatischer Schildkröten: Cuora amboinensis kamaroma Rummler & Fritz, 1991 x Mauremys annamensis (Siebenrock, 1903) Salamandra. 2002;38:129–134.
Seminoff J.A., Karl S.A., Schwartz T., Resendiz A. Hybridization of the green turtle (Chelonia mydas) and hawksbill turtle (Eretmochelys imbricata) in the Pacific Ocean: Indication of an absence of gender bias in the directionality of crosses. Bull. Mar. Sci. 2003;73:643–652.
James M.C., Martin K., Dutton P.H. Hybridization between a green turtle, Chelonia mydas, and loggerhead turtle, Caretta caretta, and the first record of a green turtle in Atlantic Canada. Can. Field-Nat. 2004;118:579–582. doi: 10.22621/cfn.v118i4.59. DOI
Lara-Ruiz P., Lopez G.G., Santos F.R., Soares L.S. Extensive hybridization in hawksbill turtles (Eretmochelys imbricata) nesting in Brazil revealed by mtDNA analyses. Conserv. Genet. 2006;7:773–781. doi: 10.1007/s10592-005-9102-9. DOI
Stuart B.L., Parham J.F. Recent hybrid origin of three rare Chinese turtles. Conserv. Genet. 2006;8:169–175. doi: 10.1007/s10592-006-9159-0. DOI
Lee Y., Lin J.W., Tseng S.P., Chen T.S., Lin S.M. Human disturbance as a possible cause of genetic introgression from exotic into native Mauremys turtles. Anim. Conserv. 2019;22:556–567. doi: 10.1111/acv.12494. DOI
Burgtorf C., Bünemann H. A telomere-like satellite (GGGTCAT)n comprises 4% of genomic DNA of Drosophila hydei and is located mainly in centromeric heterochromatin of all large acrocentric autosomes. Gene. 1993;137:287–291. doi: 10.1016/0378-1119(93)90022-U. PubMed DOI
Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos
Cytogenetic Analysis of the Members of the Snake Genera Cylindrophis, Eryx, Python, and Tropidophis
Cytogenetically Elusive Sex Chromosomes in Scincoidean Lizards
Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards
Cytogenetic Analysis of the Asian Box Turtles of the Genus Cuora (Testudines, Geoemydidae)