Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos

. 2023 Jan 09 ; 14 (1) : . [epub] 20230109

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36672918

Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16-48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic methods. Here, we applied both conventional (karyotype reconstruction and C-banding) and molecular (fluorescence in situ hybridization with probes for rDNA loci and telomeric repeats) cytogenetic analyses in seven species of geckos, namely Blaesodactylus boivini, Chondrodactylus laevigatus, Gekko badenii, Gekko cf. lionotum, Hemidactylus sahgali, Homopholis wahlbergii (Gekkonidae) and Ptyodactylus togoensis (Phyllodactylidae), in order to provide further insights into the evolution of karyotypes in geckos. Our analysis revealed the presence of interstitial telomeric repeats in four species, but we were not able to conclude if they are remnants of previous chromosome rearrangements or were formed by an accumulation of telomeric-like satellite motifs. Even though sex chromosomes were previously identified in several species from the genera Hemidactylus and Gekko by cytogenetic and/or genomic methods, they were not detected by us in any examined species. Our examined species either have poorly differentiated sex chromosomes or, possibly, environmental sex determination. Future studies should explore the effect of temperature and conduct genome-wide analyses in order to identify the mode of sex determination in these species.

Zobrazit více v PubMed

Uetz P., Freed P., Hošek J. The Reptile Database. [(accessed on 28 November 2022)]. Available online: http://www.reptile-database.org.

Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI

Gamble T. A review of sex determining mechanisms in geckos (Gekkota: Squamata) Sex. Dev. 2010;4:88–103. doi: 10.1159/000289578. PubMed DOI PMC

Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC

Schmid M., Feichtinger W., Nanda I., Schakowski R., Garcia R.V., Puppo J.M., Badillo A.F. An extraordinarily low diploid chromosome number in the reptile Gonatodes taniae (Squamata, Gekkonidae) J. Hered. 1994;85:255–260. doi: 10.1093/oxfordjournals.jhered.a111452. PubMed DOI

Ota H., Hikida T., Matsui M., Mori A. Karyotypes of two species of the genus Cyrtodactylus (Squamata: Gekkonidae) from Sarawak, Malaysia. Caryologia. 1992;45:43–49. doi: 10.1080/00087114.1992.10797209. DOI

Srikulnath K., Uno Y., Nishida C., Ota H., Matsuda Y. Karyotype reorganization in the Hokou hecko (Gekko hokouensis, Gekkonidae): The process of microchromosome disappearance in Gekkota. PLoS ONE. 2015;10:e0134829. doi: 10.1371/journal.pone.0134829. PubMed DOI PMC

Pellegrino K.C., dos Santos R.M., Rodrigues M.T., Laguna M.M., Amaro R.C., Yonenaga-Yassuda Y. Chromosomal evolution in the Brazilian geckos of the genus Gymnodactylus (Squamata, Phyllodactylidae) from the biomes of Cerrado, Caatinga and Atlantic rain forest: Evidence of Robertsonian fusion events and supernumerary chromosomes. Cytogenet. Genome Res. 2009;127:191–203. doi: 10.1159/000295175. PubMed DOI

Pokorná M., Rábová M., Ráb P., Ferguson-Smith M.A., Rens W., Kratochvíl L. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Res. 2010;18:809–820. doi: 10.1007/s10577-010-9154-7. PubMed DOI

Trifonov V.A., Giovannotti M., O’Brien P.C., Wallduck M., Lovell F., Rens W., Parise-Maltempi P.P., Caputo V., Ferguson-Smith M.A. Chromosomal evolution in Gekkonidae. I. Chromosome painting between Gekko and Hemidactylus species reveals phylogenetic relationships within the group. Chromosome Res. 2011;19:843–855. doi: 10.1007/s10577-011-9241-4. PubMed DOI

Johnson Pokorná M., Trifonov V.A., Rens W., Ferguson-Smith M.A., Kratochvíl L. Low rate of interchromosomal rearrangements during old radiation of gekkotan lizards (Squamata: Gekkota) Chromosome Res. 2015;23:299–309. doi: 10.1007/s10577-015-9468-6. PubMed DOI

Mezzasalma M., Brunelli E., Odierna G., Guarino F.M. First insights on the karyotype diversification of the endemic malagasy leaf-toed geckos (Squamata: Gekkonidae: Uroplatus) Animals. 2022;12:2054. doi: 10.3390/ani12162054. PubMed DOI PMC

Matsubara K., Knopp T., Sarre S.D., Georges A., Ezaz T. Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata) Mol. Cytogenet. 2013;6:60. doi: 10.1186/1755-8166-6-60. PubMed DOI PMC

Koubová M., Johnson Pokorná M., Rovatsos M., Farkačová K., Altmanová M., Kratochvíl L. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): Are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res. 2014;22:441–452. doi: 10.1007/s10577-014-9430-z. PubMed DOI

Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI

Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Mixed-up sex chromosomes: Identification of sex chromosomes in the X1X1X2X2/X1X2Y system of the legless lizards of the genus Lialis (Squamata: Gekkota: Pygopodidae) Cytogenet. Genome Res. 2016;149:282–289. doi: 10.1159/000450734. PubMed DOI

Gamble T., Castoe T.A., Nielsen S.V., Banks J.L., Card D.C., Schield D.R., Schuett G.W., Booth W. The discovery of XY sex chromosomes in a boa and python. Curr. Biol. 2017;27:2148–2153. doi: 10.1016/j.cub.2017.06.010. PubMed DOI

Gamble T., McKenna E., Meyer W., Nielsen S.V., Pinto B.J., Scantlebury D.P., Higham T.E. XX/XY sex chromosomes in the south american dwarf gecko (Gonatodes humeralis) J. Hered. 2018;109:462–468. doi: 10.1093/jhered/esx112. PubMed DOI

Keating S.E., Griffing A.H., Nielsen S.V., Scantlebury D.P., Gamble T. Conserved ZZ/ZW sex chromosomes in caribbean croaking geckos (Aristelliger: Sphaerodactylidae) J. Evol. Biol. 2020;33:1316–1326. doi: 10.1111/jeb.13682. PubMed DOI

Pensabene E., Kratochvíl L., Rovatsos M. Independent evolution of sex chromosomes in eublepharid geckos, a lineage with environmental and genotypic sex determination. Life. 2020;10:342. doi: 10.3390/life10120342. PubMed DOI PMC

Augstenová B., Pensabene E., Kratochvíl L., Rovatsos M. Cytogenetic evidence for sex chromosomes and karyotype evolution in anguimorphan lizards. Cells. 2021;10:1612. doi: 10.3390/cells10071612. PubMed DOI PMC

Keating S.E., Blumer M., Grismer L.L., Lin A., Nielsen S.V., Thura M.K., Wood P.L., Quah E., Jr., Gamble T. Sex chromosome turnover in bent-toed geckos (Cyrtodactylus) Genes. 2021;12:116. doi: 10.3390/genes12010116. PubMed DOI PMC

Viets B.E., Tousignant A., Ewert M.A., Nelson C.E., Crews D. Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. J. Exp. Zool. 1993;265:679–683. doi: 10.1002/jez.1402650610. PubMed DOI

Viets B.E., Ewert M.A., Talent L.G., Nelson C.E. Sex-determining mechanisms in squamate reptiles. J. Exp. Zool. 1994;270:45–56. doi: 10.1002/jez.1402700106. DOI

Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC

Endow S.A. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics. 1982;100:375–385. doi: 10.1093/genetics/100.3.375. PubMed DOI PMC

Gorman G.C. The chromosomes of the Reptilia, a cytotaxonomic interpretation. In: Chiarelli A.B., Capanna E., editors. Cytotaxonomy and Vertebrate Evolution. Academics; New York, NY, USA: 1973. pp. 349–424.

King M., Mengdon G. Chromosomal evolution in the Diplodactylidae (Gekkonidae: Reptilia) II. Chromosomal variability between New Caledonian species. Aust. J. Zool. 1990;38:219–226. doi: 10.1071/ZO9900219. DOI

Olmo E. Reptilia. In: John B., editor. Animal Cytogenetics. Volume 4 Gebrüder Borntraeger; Berlin, Germany: Stuttgart, Germany: 1986.

Ferguson-Smith M.A., Trifonov V. Mammalian karyotype evolution. Nat. Rev. Genet. 2007;8:950–962. doi: 10.1038/nrg2199. PubMed DOI

Waters P.D., Patel H.R., Ruiz-Herrera A., Álvarez-González L., Lister N.C., Simakov O., Ezaz T., Kaur P., Frere C., Grützner F., et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl. Acad. Sci. USA. 2021;118:e2112494118. doi: 10.1073/pnas.2112494118. PubMed DOI PMC

Rovatsos M., Praschag P., Fritz U., Kratochvíl L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae) Sci. Rep. 2017;7:42150. doi: 10.1038/srep42150. PubMed DOI PMC

Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC

Augstenová B., Mazzoleni S., Kostmann A., Altmanová M., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis did not reveal differentiated sex chromosomes in ten species of boas and pythons (Reptilia: Serpentes) Genes. 2019;10:934. doi: 10.3390/genes10110934. PubMed DOI PMC

Augstenová B., Pensabene E., Veselý M., Kratochvíl L., Rovatsos M. Are geckos special in sex determination? Independently evolved differentiated ZZ/ZW sex chromosomes in carphodactylid geckos. Genome Biol. Evol. 2021;13:evab119. doi: 10.1093/gbe/evab119. PubMed DOI PMC

Kostmann A., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetically elusive sex chromosomes in scincoidean lizards. Int. J. Mol. Sci. 2021;22:8670. doi: 10.3390/ijms22168670. PubMed DOI PMC

Kostmann A., Kratochvíl L., Rovatsos M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. R. Soc. B. 2021;288:20202139. doi: 10.1098/rspb.2020.2139. PubMed DOI PMC

Srikulnath K., Ahmad S.F., Singchat W., Panthum T. Why do some vertebrates have microchromosomes? Cells. 2021;10:2182. doi: 10.3390/cells10092182. PubMed DOI PMC

Charvát T., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis of the members of the snake genera Cylindrophis, Eryx, Python, and Tropidophis. Genes. 2022;13:1185. doi: 10.3390/genes13071185. PubMed DOI PMC

Oguiura N., Ferrarezzi H., Batisti R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI

Deakin J.E., Edwards M.J., Patel H., O’Meally D., Lian J., Stenhouse R., Ryan S., Livernois A.M., Azad B., Holleley C.E., et al. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. BMC Genom. 2016;17:447. doi: 10.1186/s12864-016-2774-3. PubMed DOI PMC

Srikulnath K., Matsubara K., Uno Y., Nishida C., Olsson M., Matsuda Y. Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards. Chromosoma. 2014;123:563–575. doi: 10.1007/s00412-014-0467-8. PubMed DOI

Deakin J.E., Ezaz T. Understanding the evolution of reptile chromosomes through applications of combined cytogenetics and genomics approaches. Cytogenet Genome Res. 2019;157:7–20. doi: 10.1159/000495974. PubMed DOI

Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI

Streicher J.W., Wiens J.J. Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biol. Lett. 2017;13:20170393. doi: 10.1098/rsbl.2017.0393. PubMed DOI PMC

Wiens J.J., Hutter C.R., Mulcahy D.G., Noonan B.P., Townsend T.M., Sites J.W., Jr., Reeder T.W. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol. Lett. 2012;8:1043–1046. doi: 10.1098/rsbl.2012.0703. PubMed DOI PMC

Reeder T.W., Townsend T.M., Mulcahy D.G., Noona B.P., Wood P.L., Jr., Sites J.W., Jr., Wiens J.J. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE. 2015;10:e0118199. doi: 10.1371/journal.pone.0118199. PubMed DOI PMC

Burbrink F.T., Grazziotin F.G., Pyron R.A., Cundall D., Donnellan S., Irish F., Keogh J.S., Kraus F., Murphy R.W., Noonan B., et al. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Syst. Biol. 2020;69:502–520. doi: 10.1093/sysbio/syz062. PubMed DOI

Townsend T., Larson A., Louis E., Macey J.R. Molecular phylogenetics of squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 2004;53:735–757. doi: 10.1080/10635150490522340. PubMed DOI

Singhal S., Colston T.J., Grundler M.R., Smith S.A., Costa G.C., Colli G.R., Moritz C., Pyron R.A., Rabosky D.L. Congruence and conflict in the higher-level phylogenetics of squamate reptiles: An expanded phylogenomic perspective. Syst. Biol. 2021;70:542–557. doi: 10.1093/sysbio/syaa054. PubMed DOI

Park V.M., Gustashaw K.M., Wathen T.M. The presence of interstitial telomeric sequences in constitutional chromosome abnormalities. Am. J. Hum. Genet. 1992;50:914–923. PubMed PMC

Rossi E., Floridia G., Casali M., Danesino C., Chiumello G., Bernardi F., Magnani I., Papi L., Mura M., Zuffardi O. Types, stability, and phenotypic consequences of chromosome rearrangements leading to interstitial telomeric sequences. J. Med. Genet. 1993;30:926–931. doi: 10.1136/jmg.30.11.926. PubMed DOI PMC

Melek M., Shippen D.E. Chromosome healing: Spontaneous and programmed de novo telomere formation by telomerase. BioEssays. 1996;18:301–308. doi: 10.1002/bies.950180408. PubMed DOI

Vermeesch J.R., Petit P., Speleman F., Devriendt K., Fryns J.P., Marynen P. Interstitial telomeric sequences at the junction site of a jumping translocation. Hum. Genet. 1997;99:735–737. doi: 10.1007/s004390050440. PubMed DOI

Shay J.R., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI

Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI

Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC

Clemente L., Mazzoleni S., Pensabene Bellavia E., Augstenová B., Auer M., Praschag P., Protiva T., Velenský P., Wagner P., Fritz U., et al. Interstitial telomeric repeats are rare in turtles. Genes. 2020;11:657. doi: 10.3390/genes11060657. PubMed DOI PMC

Singchat W., Panthum T., Ahmad S.F., Baicharoen S., Muangmai N., Duengkae P., Griffin D.K., Srikulnath K. Remnant of unrelated amniote sex chromosomal linkage sharing on the same chromosome in house gecko lizards, providing a better understanding of the ancestral super-sex chromosome. Cells. 2021;10:2969. doi: 10.3390/cells10112969. PubMed DOI PMC

Howell W.M., Black D.A. Location of the nucleolus organizer regions on the sex chromosome of the banded killifish Fundulus diaphanous. Copeia. 1979;1979:544–546. doi: 10.2307/1443241. DOI

Reed K.M., Phillips R.B. Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosome Res. 1997;5:221–227. doi: 10.1023/A:1018411417816. PubMed DOI

Born G.G., Bertollo L.A. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NOR-bearing X chromosome. Chromosome Res. 2000;8:111–118. doi: 10.1023/A:1009238402051. PubMed DOI

Roy V., Monti-Dedieu L., Chaminade N., Siljak-Yakovlev S., Aulard S., Lemeunier F., Montchamp-Moreau C. Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster. Heredity. 2005;94:388–395. doi: 10.1038/sj.hdy.6800612. PubMed DOI

Cioffi M.B., Martins C., Rebordinos L., Vicari M.R., Bertollo L.A. Differentiation of the XX/XY sex chromosome system in the fish Hoplias malabaricus: Unusual accumulation of repetitive sequences on the X chromosome. Sex Dev. 2010;4:176–185. doi: 10.1159/000309726. PubMed DOI

Drosopoulou E., Nakou I., Síchová J., Kubíčková S., Marec F., Mavragani-Tsipidou P. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae) Genetica. 2012;140:169–180. doi: 10.1007/s10709-012-9668-3. PubMed DOI

Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Sánchez Baca A., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC

Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC

Kostmann A., Kratochvíl L., Rovatsos M. First report of sex chromosomes in plated lizards (Squamata: Gerrhosauridae) Sex Dev. 2020;14:60–65. doi: 10.1159/000513764. PubMed DOI

Solleder E., Schmid M. XX/XY-sex chromosomes in Gekko gecko (Sauria, Reptilia) Amphibia-Reptilia. 1984;5:339–345. doi: 10.1163/156853884X-005-03-14. DOI

Tokunaga S. Temperature-dependent sex determination in Gekko japonicus (Gekkonidae, Reptilia) Dev Growth Differ. 1985;27:117–120. doi: 10.1111/j.1440-169X.1985.00117.x. PubMed DOI

Kawai A., Ishijima J., Nishida C., Kosaka A., Ota H., Kohno S., Matsuda Y. The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma. 2009;118:43–51. doi: 10.1007/s00412-008-0176-2. PubMed DOI

Ding G.H., Yang J., Wang J., Ji X. Offspring sex in a TSD gecko correlates with an interaction between incubation temperature and yolk steroid hormones. Naturwissenschaften. 2012;99:999–1006. doi: 10.1007/s00114-012-0981-6. PubMed DOI

Porter C.A., Hamilton M.J., Sites J.W., Jr., Baker R.J. Location of ribosomal DNA in chromosomes of squamate reptiles: Systematic and evolutionary implications. Herpetologica. 1991;47:271–280.

Porter C.A., Haiduk M.W., de Queiroz K. Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313. doi: 10.2307/1446980. DOI

Matsubara K., Kumazawa Y., Ota H., Nishida C., Matsuda Y. Karyotype analysis of four blind snake species (Reptilia: Squamata: Scolecophidia) and karyotypic changes in serpentes. Cytogenet. Genome Res. 2019;157:98–106. doi: 10.1159/000496554. PubMed DOI

Shibaike Y., Takahashi Y., Arikura I., Iiizumi R., Kitakawa S., Sakai M., Imaoka C., Shiro H., Tanaka H., Akakubo N., et al. Chromosome evolution in the lizard genus Gekko (Gekkonidae, Squamata, Reptilia) in the East Asian islands. Cytogenet. Genome Res. 2009;127:182–190. doi: 10.1159/000303334. PubMed DOI

Aprea G., Andreone F., Fulgione D., Petraccioli A., Odierna G. Chromosomal rearrangements occurred repeatedly and independently during species diversification in Malagasy geckos, genus Paroedura. Afr. Zool. 2013;48:96–108. doi: 10.1080/15627020.2013.11407572. DOI

Rovatsos M., Farkačová K., Altmanová M., Johnson Pokorná M., Kratochvíl L. The rise and fall of differentiated sex chromosomes in geckos. Mol. Ecol. 2019;28:3042–3052. doi: 10.1111/mec.15126. PubMed DOI

Pensabene E., Yurchenko A., Kratochvíl L., Rovatsos M. Madagascar leaf-tail geckos (Uroplatus spp.) share independently evolved differentiated ZZ/ZW sex chromosomes. Cells. 2023. in press . PubMed PMC

Schmid M., Steinlein C., Haaf T., Mijares-Urrutia A. Nascent ZW sex chromosomes in Thecadactylus rapicauda (Reptilia, Squamata, Phyllodactylidae) Cytogenet. Genome Res. 2014;143:259–267. doi: 10.1159/000366212. PubMed DOI

Yoshida M., Itoh M. Karyotype of the gecko, Gekko japonicus. Chrom. Inf. Serv. 1974;17:29–31.

Holleley C.E., O’Meally D., Sarre S.D., Marshall Graves J.A., Ezaz T., Matsubara K., Azad B., Zhang X., Georges A. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature. 2015;523:79–82. doi: 10.1038/nature14574. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos

. 2024 Mar 28 ; 15 (4) : . [epub] 20240328

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace