Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36672918
PubMed Central
PMC9859368
DOI
10.3390/genes14010178
PII: genes14010178
Knihovny.cz E-zdroje
- Klíčová slova
- C-banding, FISH, Gekkota, heterochromatin, karyotype, rDNA, sex chromosomes, telomeres,
- MeSH
- celogenomová asociační studie MeSH
- hybridizace in situ fluorescenční MeSH
- ještěři * genetika MeSH
- karyotypizace MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16-48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic methods. Here, we applied both conventional (karyotype reconstruction and C-banding) and molecular (fluorescence in situ hybridization with probes for rDNA loci and telomeric repeats) cytogenetic analyses in seven species of geckos, namely Blaesodactylus boivini, Chondrodactylus laevigatus, Gekko badenii, Gekko cf. lionotum, Hemidactylus sahgali, Homopholis wahlbergii (Gekkonidae) and Ptyodactylus togoensis (Phyllodactylidae), in order to provide further insights into the evolution of karyotypes in geckos. Our analysis revealed the presence of interstitial telomeric repeats in four species, but we were not able to conclude if they are remnants of previous chromosome rearrangements or were formed by an accumulation of telomeric-like satellite motifs. Even though sex chromosomes were previously identified in several species from the genera Hemidactylus and Gekko by cytogenetic and/or genomic methods, they were not detected by us in any examined species. Our examined species either have poorly differentiated sex chromosomes or, possibly, environmental sex determination. Future studies should explore the effect of temperature and conduct genome-wide analyses in order to identify the mode of sex determination in these species.
Zobrazit více v PubMed
Uetz P., Freed P., Hošek J. The Reptile Database. [(accessed on 28 November 2022)]. Available online: http://www.reptile-database.org.
Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI
Gamble T. A review of sex determining mechanisms in geckos (Gekkota: Squamata) Sex. Dev. 2010;4:88–103. doi: 10.1159/000289578. PubMed DOI PMC
Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Schmid M., Feichtinger W., Nanda I., Schakowski R., Garcia R.V., Puppo J.M., Badillo A.F. An extraordinarily low diploid chromosome number in the reptile Gonatodes taniae (Squamata, Gekkonidae) J. Hered. 1994;85:255–260. doi: 10.1093/oxfordjournals.jhered.a111452. PubMed DOI
Ota H., Hikida T., Matsui M., Mori A. Karyotypes of two species of the genus Cyrtodactylus (Squamata: Gekkonidae) from Sarawak, Malaysia. Caryologia. 1992;45:43–49. doi: 10.1080/00087114.1992.10797209. DOI
Srikulnath K., Uno Y., Nishida C., Ota H., Matsuda Y. Karyotype reorganization in the Hokou hecko (Gekko hokouensis, Gekkonidae): The process of microchromosome disappearance in Gekkota. PLoS ONE. 2015;10:e0134829. doi: 10.1371/journal.pone.0134829. PubMed DOI PMC
Pellegrino K.C., dos Santos R.M., Rodrigues M.T., Laguna M.M., Amaro R.C., Yonenaga-Yassuda Y. Chromosomal evolution in the Brazilian geckos of the genus Gymnodactylus (Squamata, Phyllodactylidae) from the biomes of Cerrado, Caatinga and Atlantic rain forest: Evidence of Robertsonian fusion events and supernumerary chromosomes. Cytogenet. Genome Res. 2009;127:191–203. doi: 10.1159/000295175. PubMed DOI
Pokorná M., Rábová M., Ráb P., Ferguson-Smith M.A., Rens W., Kratochvíl L. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Res. 2010;18:809–820. doi: 10.1007/s10577-010-9154-7. PubMed DOI
Trifonov V.A., Giovannotti M., O’Brien P.C., Wallduck M., Lovell F., Rens W., Parise-Maltempi P.P., Caputo V., Ferguson-Smith M.A. Chromosomal evolution in Gekkonidae. I. Chromosome painting between Gekko and Hemidactylus species reveals phylogenetic relationships within the group. Chromosome Res. 2011;19:843–855. doi: 10.1007/s10577-011-9241-4. PubMed DOI
Johnson Pokorná M., Trifonov V.A., Rens W., Ferguson-Smith M.A., Kratochvíl L. Low rate of interchromosomal rearrangements during old radiation of gekkotan lizards (Squamata: Gekkota) Chromosome Res. 2015;23:299–309. doi: 10.1007/s10577-015-9468-6. PubMed DOI
Mezzasalma M., Brunelli E., Odierna G., Guarino F.M. First insights on the karyotype diversification of the endemic malagasy leaf-toed geckos (Squamata: Gekkonidae: Uroplatus) Animals. 2022;12:2054. doi: 10.3390/ani12162054. PubMed DOI PMC
Matsubara K., Knopp T., Sarre S.D., Georges A., Ezaz T. Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata) Mol. Cytogenet. 2013;6:60. doi: 10.1186/1755-8166-6-60. PubMed DOI PMC
Koubová M., Johnson Pokorná M., Rovatsos M., Farkačová K., Altmanová M., Kratochvíl L. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): Are differentiated sex chromosomes indeed so evolutionary stable? Chromosome Res. 2014;22:441–452. doi: 10.1007/s10577-014-9430-z. PubMed DOI
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Rovatsos M., Johnson Pokorná M., Altmanová M., Kratochvíl L. Mixed-up sex chromosomes: Identification of sex chromosomes in the X1X1X2X2/X1X2Y system of the legless lizards of the genus Lialis (Squamata: Gekkota: Pygopodidae) Cytogenet. Genome Res. 2016;149:282–289. doi: 10.1159/000450734. PubMed DOI
Gamble T., Castoe T.A., Nielsen S.V., Banks J.L., Card D.C., Schield D.R., Schuett G.W., Booth W. The discovery of XY sex chromosomes in a boa and python. Curr. Biol. 2017;27:2148–2153. doi: 10.1016/j.cub.2017.06.010. PubMed DOI
Gamble T., McKenna E., Meyer W., Nielsen S.V., Pinto B.J., Scantlebury D.P., Higham T.E. XX/XY sex chromosomes in the south american dwarf gecko (Gonatodes humeralis) J. Hered. 2018;109:462–468. doi: 10.1093/jhered/esx112. PubMed DOI
Keating S.E., Griffing A.H., Nielsen S.V., Scantlebury D.P., Gamble T. Conserved ZZ/ZW sex chromosomes in caribbean croaking geckos (Aristelliger: Sphaerodactylidae) J. Evol. Biol. 2020;33:1316–1326. doi: 10.1111/jeb.13682. PubMed DOI
Pensabene E., Kratochvíl L., Rovatsos M. Independent evolution of sex chromosomes in eublepharid geckos, a lineage with environmental and genotypic sex determination. Life. 2020;10:342. doi: 10.3390/life10120342. PubMed DOI PMC
Augstenová B., Pensabene E., Kratochvíl L., Rovatsos M. Cytogenetic evidence for sex chromosomes and karyotype evolution in anguimorphan lizards. Cells. 2021;10:1612. doi: 10.3390/cells10071612. PubMed DOI PMC
Keating S.E., Blumer M., Grismer L.L., Lin A., Nielsen S.V., Thura M.K., Wood P.L., Quah E., Jr., Gamble T. Sex chromosome turnover in bent-toed geckos (Cyrtodactylus) Genes. 2021;12:116. doi: 10.3390/genes12010116. PubMed DOI PMC
Viets B.E., Tousignant A., Ewert M.A., Nelson C.E., Crews D. Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. J. Exp. Zool. 1993;265:679–683. doi: 10.1002/jez.1402650610. PubMed DOI
Viets B.E., Ewert M.A., Talent L.G., Nelson C.E. Sex-determining mechanisms in squamate reptiles. J. Exp. Zool. 1994;270:45–56. doi: 10.1002/jez.1402700106. DOI
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC
Endow S.A. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics. 1982;100:375–385. doi: 10.1093/genetics/100.3.375. PubMed DOI PMC
Gorman G.C. The chromosomes of the Reptilia, a cytotaxonomic interpretation. In: Chiarelli A.B., Capanna E., editors. Cytotaxonomy and Vertebrate Evolution. Academics; New York, NY, USA: 1973. pp. 349–424.
King M., Mengdon G. Chromosomal evolution in the Diplodactylidae (Gekkonidae: Reptilia) II. Chromosomal variability between New Caledonian species. Aust. J. Zool. 1990;38:219–226. doi: 10.1071/ZO9900219. DOI
Olmo E. Reptilia. In: John B., editor. Animal Cytogenetics. Volume 4 Gebrüder Borntraeger; Berlin, Germany: Stuttgart, Germany: 1986.
Ferguson-Smith M.A., Trifonov V. Mammalian karyotype evolution. Nat. Rev. Genet. 2007;8:950–962. doi: 10.1038/nrg2199. PubMed DOI
Waters P.D., Patel H.R., Ruiz-Herrera A., Álvarez-González L., Lister N.C., Simakov O., Ezaz T., Kaur P., Frere C., Grützner F., et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl. Acad. Sci. USA. 2021;118:e2112494118. doi: 10.1073/pnas.2112494118. PubMed DOI PMC
Rovatsos M., Praschag P., Fritz U., Kratochvíl L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae) Sci. Rep. 2017;7:42150. doi: 10.1038/srep42150. PubMed DOI PMC
Augstenová B., Mazzoleni S., Kratochvíl L., Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. doi: 10.3390/genes9010005. PubMed DOI PMC
Augstenová B., Mazzoleni S., Kostmann A., Altmanová M., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis did not reveal differentiated sex chromosomes in ten species of boas and pythons (Reptilia: Serpentes) Genes. 2019;10:934. doi: 10.3390/genes10110934. PubMed DOI PMC
Augstenová B., Pensabene E., Veselý M., Kratochvíl L., Rovatsos M. Are geckos special in sex determination? Independently evolved differentiated ZZ/ZW sex chromosomes in carphodactylid geckos. Genome Biol. Evol. 2021;13:evab119. doi: 10.1093/gbe/evab119. PubMed DOI PMC
Kostmann A., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetically elusive sex chromosomes in scincoidean lizards. Int. J. Mol. Sci. 2021;22:8670. doi: 10.3390/ijms22168670. PubMed DOI PMC
Kostmann A., Kratochvíl L., Rovatsos M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. R. Soc. B. 2021;288:20202139. doi: 10.1098/rspb.2020.2139. PubMed DOI PMC
Srikulnath K., Ahmad S.F., Singchat W., Panthum T. Why do some vertebrates have microchromosomes? Cells. 2021;10:2182. doi: 10.3390/cells10092182. PubMed DOI PMC
Charvát T., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetic analysis of the members of the snake genera Cylindrophis, Eryx, Python, and Tropidophis. Genes. 2022;13:1185. doi: 10.3390/genes13071185. PubMed DOI PMC
Oguiura N., Ferrarezzi H., Batisti R.F. Cytogenetics and molecular data in snakes: A phylogenetic approach. Cytogenet Genome Res. 2009;127:128–142. doi: 10.1159/000295789. PubMed DOI
Deakin J.E., Edwards M.J., Patel H., O’Meally D., Lian J., Stenhouse R., Ryan S., Livernois A.M., Azad B., Holleley C.E., et al. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. BMC Genom. 2016;17:447. doi: 10.1186/s12864-016-2774-3. PubMed DOI PMC
Srikulnath K., Matsubara K., Uno Y., Nishida C., Olsson M., Matsuda Y. Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards. Chromosoma. 2014;123:563–575. doi: 10.1007/s00412-014-0467-8. PubMed DOI
Deakin J.E., Ezaz T. Understanding the evolution of reptile chromosomes through applications of combined cytogenetics and genomics approaches. Cytogenet Genome Res. 2019;157:7–20. doi: 10.1159/000495974. PubMed DOI
Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI
Streicher J.W., Wiens J.J. Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biol. Lett. 2017;13:20170393. doi: 10.1098/rsbl.2017.0393. PubMed DOI PMC
Wiens J.J., Hutter C.R., Mulcahy D.G., Noonan B.P., Townsend T.M., Sites J.W., Jr., Reeder T.W. Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol. Lett. 2012;8:1043–1046. doi: 10.1098/rsbl.2012.0703. PubMed DOI PMC
Reeder T.W., Townsend T.M., Mulcahy D.G., Noona B.P., Wood P.L., Jr., Sites J.W., Jr., Wiens J.J. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE. 2015;10:e0118199. doi: 10.1371/journal.pone.0118199. PubMed DOI PMC
Burbrink F.T., Grazziotin F.G., Pyron R.A., Cundall D., Donnellan S., Irish F., Keogh J.S., Kraus F., Murphy R.W., Noonan B., et al. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Syst. Biol. 2020;69:502–520. doi: 10.1093/sysbio/syz062. PubMed DOI
Townsend T., Larson A., Louis E., Macey J.R. Molecular phylogenetics of squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 2004;53:735–757. doi: 10.1080/10635150490522340. PubMed DOI
Singhal S., Colston T.J., Grundler M.R., Smith S.A., Costa G.C., Colli G.R., Moritz C., Pyron R.A., Rabosky D.L. Congruence and conflict in the higher-level phylogenetics of squamate reptiles: An expanded phylogenomic perspective. Syst. Biol. 2021;70:542–557. doi: 10.1093/sysbio/syaa054. PubMed DOI
Park V.M., Gustashaw K.M., Wathen T.M. The presence of interstitial telomeric sequences in constitutional chromosome abnormalities. Am. J. Hum. Genet. 1992;50:914–923. PubMed PMC
Rossi E., Floridia G., Casali M., Danesino C., Chiumello G., Bernardi F., Magnani I., Papi L., Mura M., Zuffardi O. Types, stability, and phenotypic consequences of chromosome rearrangements leading to interstitial telomeric sequences. J. Med. Genet. 1993;30:926–931. doi: 10.1136/jmg.30.11.926. PubMed DOI PMC
Melek M., Shippen D.E. Chromosome healing: Spontaneous and programmed de novo telomere formation by telomerase. BioEssays. 1996;18:301–308. doi: 10.1002/bies.950180408. PubMed DOI
Vermeesch J.R., Petit P., Speleman F., Devriendt K., Fryns J.P., Marynen P. Interstitial telomeric sequences at the junction site of a jumping translocation. Hum. Genet. 1997;99:735–737. doi: 10.1007/s004390050440. PubMed DOI
Shay J.R., Wright W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019;20:299–309. doi: 10.1038/s41576-019-0099-1. PubMed DOI
Rovatsos M.T., Marchal J.A., Romero-Fernández I., Fernández F.J., Giagia-Athanosopoulou E.B., Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011;19:869–882. doi: 10.1007/s10577-011-9242-3. PubMed DOI
Rovatsos M., Kratochvíl L., Altmanová M., Johnson Pokorná M. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Clemente L., Mazzoleni S., Pensabene Bellavia E., Augstenová B., Auer M., Praschag P., Protiva T., Velenský P., Wagner P., Fritz U., et al. Interstitial telomeric repeats are rare in turtles. Genes. 2020;11:657. doi: 10.3390/genes11060657. PubMed DOI PMC
Singchat W., Panthum T., Ahmad S.F., Baicharoen S., Muangmai N., Duengkae P., Griffin D.K., Srikulnath K. Remnant of unrelated amniote sex chromosomal linkage sharing on the same chromosome in house gecko lizards, providing a better understanding of the ancestral super-sex chromosome. Cells. 2021;10:2969. doi: 10.3390/cells10112969. PubMed DOI PMC
Howell W.M., Black D.A. Location of the nucleolus organizer regions on the sex chromosome of the banded killifish Fundulus diaphanous. Copeia. 1979;1979:544–546. doi: 10.2307/1443241. DOI
Reed K.M., Phillips R.B. Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosome Res. 1997;5:221–227. doi: 10.1023/A:1018411417816. PubMed DOI
Born G.G., Bertollo L.A. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NOR-bearing X chromosome. Chromosome Res. 2000;8:111–118. doi: 10.1023/A:1009238402051. PubMed DOI
Roy V., Monti-Dedieu L., Chaminade N., Siljak-Yakovlev S., Aulard S., Lemeunier F., Montchamp-Moreau C. Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster. Heredity. 2005;94:388–395. doi: 10.1038/sj.hdy.6800612. PubMed DOI
Cioffi M.B., Martins C., Rebordinos L., Vicari M.R., Bertollo L.A. Differentiation of the XX/XY sex chromosome system in the fish Hoplias malabaricus: Unusual accumulation of repetitive sequences on the X chromosome. Sex Dev. 2010;4:176–185. doi: 10.1159/000309726. PubMed DOI
Drosopoulou E., Nakou I., Síchová J., Kubíčková S., Marec F., Mavragani-Tsipidou P. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae) Genetica. 2012;140:169–180. doi: 10.1007/s10709-012-9668-3. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Sánchez Baca A., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae) Sci. Rep. 2020;10:4276. doi: 10.1038/s41598-020-61116-w. PubMed DOI PMC
Kostmann A., Kratochvíl L., Rovatsos M. First report of sex chromosomes in plated lizards (Squamata: Gerrhosauridae) Sex Dev. 2020;14:60–65. doi: 10.1159/000513764. PubMed DOI
Solleder E., Schmid M. XX/XY-sex chromosomes in Gekko gecko (Sauria, Reptilia) Amphibia-Reptilia. 1984;5:339–345. doi: 10.1163/156853884X-005-03-14. DOI
Tokunaga S. Temperature-dependent sex determination in Gekko japonicus (Gekkonidae, Reptilia) Dev Growth Differ. 1985;27:117–120. doi: 10.1111/j.1440-169X.1985.00117.x. PubMed DOI
Kawai A., Ishijima J., Nishida C., Kosaka A., Ota H., Kohno S., Matsuda Y. The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma. 2009;118:43–51. doi: 10.1007/s00412-008-0176-2. PubMed DOI
Ding G.H., Yang J., Wang J., Ji X. Offspring sex in a TSD gecko correlates with an interaction between incubation temperature and yolk steroid hormones. Naturwissenschaften. 2012;99:999–1006. doi: 10.1007/s00114-012-0981-6. PubMed DOI
Porter C.A., Hamilton M.J., Sites J.W., Jr., Baker R.J. Location of ribosomal DNA in chromosomes of squamate reptiles: Systematic and evolutionary implications. Herpetologica. 1991;47:271–280.
Porter C.A., Haiduk M.W., de Queiroz K. Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313. doi: 10.2307/1446980. DOI
Matsubara K., Kumazawa Y., Ota H., Nishida C., Matsuda Y. Karyotype analysis of four blind snake species (Reptilia: Squamata: Scolecophidia) and karyotypic changes in serpentes. Cytogenet. Genome Res. 2019;157:98–106. doi: 10.1159/000496554. PubMed DOI
Shibaike Y., Takahashi Y., Arikura I., Iiizumi R., Kitakawa S., Sakai M., Imaoka C., Shiro H., Tanaka H., Akakubo N., et al. Chromosome evolution in the lizard genus Gekko (Gekkonidae, Squamata, Reptilia) in the East Asian islands. Cytogenet. Genome Res. 2009;127:182–190. doi: 10.1159/000303334. PubMed DOI
Aprea G., Andreone F., Fulgione D., Petraccioli A., Odierna G. Chromosomal rearrangements occurred repeatedly and independently during species diversification in Malagasy geckos, genus Paroedura. Afr. Zool. 2013;48:96–108. doi: 10.1080/15627020.2013.11407572. DOI
Rovatsos M., Farkačová K., Altmanová M., Johnson Pokorná M., Kratochvíl L. The rise and fall of differentiated sex chromosomes in geckos. Mol. Ecol. 2019;28:3042–3052. doi: 10.1111/mec.15126. PubMed DOI
Pensabene E., Yurchenko A., Kratochvíl L., Rovatsos M. Madagascar leaf-tail geckos (Uroplatus spp.) share independently evolved differentiated ZZ/ZW sex chromosomes. Cells. 2023. in press . PubMed PMC
Schmid M., Steinlein C., Haaf T., Mijares-Urrutia A. Nascent ZW sex chromosomes in Thecadactylus rapicauda (Reptilia, Squamata, Phyllodactylidae) Cytogenet. Genome Res. 2014;143:259–267. doi: 10.1159/000366212. PubMed DOI
Yoshida M., Itoh M. Karyotype of the gecko, Gekko japonicus. Chrom. Inf. Serv. 1974;17:29–31.
Holleley C.E., O’Meally D., Sarre S.D., Marshall Graves J.A., Ezaz T., Matsubara K., Azad B., Zhang X., Georges A. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature. 2015;523:79–82. doi: 10.1038/nature14574. PubMed DOI