Benefits of pallidal stimulation in dystonia are linked to cerebellar volume and cortical inhibition

. 2018 Nov 21 ; 8 (1) : 17218. [epub] 20181121

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30464181

Grantová podpora
GAČR 16-13323S Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
Progres Q27/LF1 Univerzita Karlova v Praze (Charles University) - International
MJFF-11362 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation) - International
MJFF-11362 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation) - International
MJFF-11362 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation) - International
PDF-IRG-1307 Parkinson's Disease Foundation (Parkinson's Disease Foundation, Inc.) - International

Odkazy

PubMed 30464181
PubMed Central PMC6249276
DOI 10.1038/s41598-018-34880-z
PII: 10.1038/s41598-018-34880-z
Knihovny.cz E-zdroje

Clinical benefits of pallidal deep brain stimulation (GPi DBS) in dystonia increase relatively slowly suggesting slow plastic processes in the motor network. Twenty-two patients with dystonia of various distribution and etiology treated by chronic GPi DBS and 22 healthy subjects were examined for short-latency intracortical inhibition of the motor cortex elicited by paired transcranial magnetic stimulation. The relationships between grey matter volume and intracortical inhibition considering the long-term clinical outcome and states of the GPi DBS were analysed. The acute effects of GPi DBS were associated with a shortening of the motor response whereas the grey matter of chronically treated patients with a better clinical outcome showed hypertrophy of the supplementary motor area and cerebellar vermis. In addition, the volume of the cerebellar hemispheres of patients correlated with the improvement of intracortical inhibition which was generally less effective in patients than in controls regardless of the DBS states. Importantly, good responders to GPi DBS showed a similar level of short-latency intracortical inhibition in the motor cortex as healthy controls whereas non-responders were unable to increase it. All these results support the multilevel impact of effective DBS on the motor networks in dystonia and suggest potential biomarkers of responsiveness to this treatment.

Zobrazit více v PubMed

Vidailhet M, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352:459–467. doi: 10.1056/NEJMoa042187. PubMed DOI

Holloway KL, et al. Deep brain stimulation for dystonia: a meta-analysis. Neuromodulation. 2006;9:253–261. doi: 10.1111/j.1525-1403.2006.00067.x. PubMed DOI

Moro E, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol. 2017;24:552–560. doi: 10.1111/ene.13255. PubMed DOI PMC

Coubes Philippe, Cif Laura, El Fertit Hassan, Hemm Simone, Vayssiere Nathalie, Serrat Stephanie, Picot Marie Christine, Tuffery Sylvie, Claustres Mireille, Echenne Bernard, Frerebeau Philippe. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. Journal of Neurosurgery. 2004;101(2):189–194. doi: 10.3171/jns.2004.101.2.0189. PubMed DOI

Volkmann J, Benecke R. Deep brain stimulation for dystonia: patient selection and evaluation. Mov Disord. 2002;17(Suppl 3):S112–115. doi: 10.1002/mds.10151. PubMed DOI

McClelland VM, et al. Differences in globus pallidus neuronal firing rates and patterns relate to different disease biology in children with dystonia. J Neurol Neurosurg Psychiatry. 2016;87:958–967. doi: 10.1136/jnnp-2015-311803. PubMed DOI PMC

Vasques X, Cif L, Gonzalez V, Nicholson C, Coubes P. Factors predicting improvement in primary generalized dystonia treated by pallidal deep brain stimulation. Mov Disord. 2009;24:846–853. doi: 10.1002/mds.22433. PubMed DOI

Andrews C, Aviles-Olmos I, Hariz M, Foltynie T. Which patients with dystonia benefit from deep brain stimulation? A metaregression of individual patient outcomes. J Neurol Neurosurg Psychiatry. 2010;81:1383–1389. doi: 10.1136/jnnp.2010.207993. PubMed DOI

Chung Moonyoung, Huh Ryoong. Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochirurgica. 2015;158(1):171–180. doi: 10.1007/s00701-015-2646-7. PubMed DOI

Hallett M. Neurophysiology of dystonia: The role of inhibition. Neurobiol Dis. 2011;42:177–184. doi: 10.1016/j.nbd.2010.08.025. PubMed DOI PMC

Berardelli A, et al. The pathophysiology of primary dystonia. Brain. 1998;121:1195–1212. doi: 10.1093/brain/121.7.1195. PubMed DOI

Abbruzzese G, Marchese R, Buccolieri A, Gasparetto B, Trompetto C. Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain. 2001;124:537–545. doi: 10.1093/brain/124.3.537. PubMed DOI

Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Mov Disord. 2003;18:231–240. doi: 10.1002/mds.10327. PubMed DOI

Zheng ZZ, Pan PL, Wang W, Shang HF. Neural network of primary focal dystonia by an anatomic likelihood estimation meta-analysis of gray matter abnormalities. J Neurol Sci. 2012;316:51–55. doi: 10.1016/j.jns.2012.01.032. PubMed DOI

Garraux G, et al. Changes in brain anatomy in focal hand dystonia. Ann Neurol. 2004;55:736–739. doi: 10.1002/ana.20113. PubMed DOI

Egger K, et al. Voxel based morphometry reveals specific gray matter changes in primary dystonia. Mov Disord. 2007;22:1538–1542. doi: 10.1002/mds.21619. PubMed DOI

Obermann M, et al. Morphometric changes of sensorimotor structures in focal dystonia. Mov Disord. 2007;22:1117–1123. doi: 10.1002/mds.21495. PubMed DOI

Kujirai T, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–519. doi: 10.1113/jphysiol.1993.sp019912. PubMed DOI PMC

Ziemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol. 1996;496(Pt 3):873–881. doi: 10.1113/jphysiol.1996.sp021734. PubMed DOI PMC

Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry. 1995;59:493–498. doi: 10.1136/jnnp.59.5.493. PubMed DOI PMC

Sommer M, et al. Intracortical excitability in the hand motor representation in hand dystonia and blepharospasm. Mov Disord. 2002;17:1017–1025. doi: 10.1002/mds.10205. PubMed DOI

Kuhn AA, et al. Modulation of motor cortex excitability by pallidal stimulation in patients with severe dystonia. Neurology. 2003;60:768–774. doi: 10.1212/01.WNL.0000044396.64752.4C. PubMed DOI

Ruge D, et al. Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms. Brain. 2011;134:2106–2115. doi: 10.1093/brain/awr122. PubMed DOI

Ruge D, et al. Longterm deep brain stimulation withdrawal: clinical stability despite electrophysiological instability. J Neurol Sci. 2014;342:197–199. doi: 10.1016/j.jns.2014.05.011. PubMed DOI

Wassermann, E. et al. Oxford Handbook of Transcranial Stimulation. (OUP Oxford, 2008).

Beck S, et al. Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci. 2008;28:10363–10369. doi: 10.1523/JNEUROSCI.3564-08.2008. PubMed DOI PMC

Trompetto Carlo, Avanzino Laura, Marinelli Lucio, Mori Laura, Pelosin Elisa, Roccatagliata Luca, Abbruzzese Giovanni. Corticospinal excitability in patients with secondary dystonia due to focal lesions of the basal ganglia and thalamus. Clinical Neurophysiology. 2012;123(4):808–814. doi: 10.1016/j.clinph.2011.06.033. PubMed DOI

Ruge D, et al. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment. Mov Disord. 2011;26:1913–1921. doi: 10.1002/mds.23731. PubMed DOI PMC

Orth M, Snijders AH, Rothwell JC. The variability of intracortical inhibition and facilitation. Clin Neurophysiol. 2003;114:2362–2369. doi: 10.1016/S1388-2457(03)00243-8. PubMed DOI

Draganski B, Thun-Hohenstein C, Bogdahn U, Winkler J, May A. “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology. 2003;61:1228–1231. doi: 10.1212/01.WNL.0000094240.93745.83. PubMed DOI

Ramdhani RA, et al. What’s Special About Task in Dystonia? A Voxel-Based Morphometry and Diffusion Weighted Imaging Study. Mov Disord. 2014;29:1141–1150. doi: 10.1002/mds.25934. PubMed DOI PMC

Rodriguez-Raecke R, et al. Grey matter alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN) Parkinsonism Relat Disord. 2014;20:975–979. doi: 10.1016/j.parkreldis.2014.06.005. PubMed DOI

Guehl D, et al. Primate models of dystonia. Prog Neurobiol. 2009;87:118–131. doi: 10.1016/j.pneurobio.2008.10.003. PubMed DOI

Shibasaki H. Cortical activities associated with voluntary movements and involuntary movements. Clin Neurophysiol. 2012;123:229–243. doi: 10.1016/j.clinph.2011.07.042. PubMed DOI

Jinnah, H. A. & Hess, E. J. Evolving concepts in the pathogenesis of dystonia. Parkinsonism Relat Disord (2017). PubMed PMC

Filip P, Lungu OV, Bares M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol. 2013;124:1269–1276. doi: 10.1016/j.clinph.2013.01.003. PubMed DOI

Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci. 2008;9:856–869. doi: 10.1038/nrn2478. PubMed DOI

Dinomais M, et al. Functional MRI comparison of passive and active movement: possible inhibitory role of supplementary motor area. Neuroreport. 2009;20:1351–1355. doi: 10.1097/WNR.0b013e328330cd43. PubMed DOI

Vidailhet M, Grabli D, Roze E. Pathophysiology of dystonia. Curr Opin Neurol. 2009;22:406–413. doi: 10.1097/WCO.0b013e32832d9ef3. PubMed DOI

Cuny E, et al. Sensory motor mismatch within the supplementary motor area in the dystonic monkey. Neurobiol Dis. 2008;30:151–161. doi: 10.1016/j.nbd.2007.12.011. PubMed DOI

Oga T, et al. Abnormal cortical mechanisms of voluntary muscle relaxation in patients with writer’s cramp: an fMRI study. Brain. 2002;125:895–903. doi: 10.1093/brain/awf083. PubMed DOI

Havrankova P, et al. Repetitive TMS of the somatosensory cortex improves writer’s cramp and enhances cortical activity. Neuro Endocrinol Lett. 2010;31:73–86. PubMed

Coffman KA, Dum RP, Strick PL. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci USA. 2011;108:16068–16073. doi: 10.1073/pnas.1107904108. PubMed DOI PMC

Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54:957–1006. doi: 10.1152/physrev.1974.54.4.957. PubMed DOI

Argyelan M, et al. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci. 2009;29:9740–9747. doi: 10.1523/JNEUROSCI.2300-09.2009. PubMed DOI PMC

Fierro B, et al. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176:440–447. doi: 10.1007/s00221-006-0628-y. PubMed DOI

Harrington A, Hammond-Tooke GD. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition. PLoS One. 2015;10:e0141284. doi: 10.1371/journal.pone.0141284. PubMed DOI PMC

Langguth B, et al. Modulating cerebello-thalamocortical pathways by neuronavigated cerebellar repetitive transcranial stimulation (rTMS) Neurophysiologie Clinique-Clinical Neurophysiology. 2008;38:289–295. doi: 10.1016/j.neucli.2008.08.003. PubMed DOI

Koch G, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clinical Neurophysiology. 2008;119:2559–2569. doi: 10.1016/j.clinph.2008.08.008. PubMed DOI

O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex. 2010;20:953–965. doi: 10.1093/cercor/bhp157. PubMed DOI PMC

Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–2345. doi: 10.1152/jn.00339.2011. PubMed DOI PMC

Hess CW, Mills KR, Murray NM. Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol. 1987;388:397–419. doi: 10.1113/jphysiol.1987.sp016621. PubMed DOI PMC

Hidding U, et al. MEP latency shift after implantation of deep brain stimulation systems in the subthalamic nucleus in patients with advanced Parkinson’s disease. Mov Disord. 2006;21:1471–1476. doi: 10.1002/mds.20951. PubMed DOI

Kuhn AA, Trottenberg T, Kupsch A, Meyer BU. Pseudo-bilateral hand motor responses evoked by transcranial magnetic stimulation in patients with deep brain stimulators. Clin Neurophysiol. 2002;113:341–345. doi: 10.1016/S1388-2457(01)00731-3. PubMed DOI

Burke D, et al. Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation. J Physiol. 1993;470:383–393. doi: 10.1113/jphysiol.1993.sp019864. PubMed DOI PMC

Di Lazzaro V, Ziemann U, Lemon RN. State of the art: Physiology of transcranial motor cortex stimulation. Brain Stimul. 2008;1:345–362. doi: 10.1016/j.brs.2008.07.004. PubMed DOI

Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev. 1995;20:91–127. doi: 10.1016/0165-0173(94)00007-C. PubMed DOI

Huang G, Mouraux A. MEP Latencies Predict the Neuromodulatory Effect of cTBS Delivered to the Ipsilateral and Contralateral Sensorimotor Cortex. PLoS One. 2015;10:e0133893. doi: 10.1371/journal.pone.0133893. PubMed DOI PMC

Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks in driving human motor cortical plasticity. Cerebral Cortex. 2013;23:1593–1605. doi: 10.1093/cercor/bhs147. PubMed DOI

Deogaonkar, M. & Vitek, J. L. In Textbook of Stereotactic and functional Neurosurgery Vol. 2 (eds Lozano. A. M., Gildenbert P. L. & Tasker R. R.) 1577–1602 (Springer-Verlag, 2009).

Pietracupa S, et al. Scales for hyperkinetic disorders: A systematic review. J Neurol Sci. 2015;358:9–21. doi: 10.1016/j.jns.2015.08.1544. PubMed DOI

Chen R, Garg RR, Lozano AM, Lang AE. Effects of internal globus pallidus stimulation on motor cortex excitability. Neurology. 2001;56:716–723. doi: 10.1212/WNL.56.6.716. PubMed DOI

Kuhn AA, Huebl J. Safety of transcranial magnetic stimulation for the newer generation of deep brain stimulators. Parkinsonism Relat Disord. 2011;17:647–648. doi: 10.1016/j.parkreldis.2011.05.007. PubMed DOI

Hodges PW, Bui BH. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol. 1996;101:511–519. PubMed

Micera S, Vannozzi G, Sabatini AM, Dario P. Improving detection of muscle activation intervals. Ieee Engineering in Medicine and Biology Magazine. 2001;20:38–46. doi: 10.1109/51.982274. PubMed DOI

Rezai AR, et al. Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol. 2004;39:300–303. doi: 10.1097/01.rli.0000124940.02340.ab. PubMed DOI

Kahan J, et al. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices. PLoS One. 2015;10:e0129077. doi: 10.1371/journal.pone.0129077. PubMed DOI PMC

Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113. doi: 10.1016/j.neuroimage.2007.07.007. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Botulinum toxin injection changes resting state cerebellar connectivity in cervical dystonia

. 2021 Apr 15 ; 11 (1) : 8322. [epub] 20210415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...