Automated Sequential Derivatization for Gas Chromatography-[Orbitrap] Mass Spectrometry-based Metabolite Profiling of Human Blood-based Samples

. 2025 Mar 05 ; 15 (5) : e5196. [epub] 20250305

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40084079

Many small molecules require derivatization to increase their volatility and to be amenable to gas chromatographic (GC) separation. Derivatization is usually time-consuming, and typical batch-wise procedures increase sample variability. Sequential automation of derivatization via robotic liquid handling enables the overlapping of sample preparation and analysis, maximizing time efficiency and minimizing variability. Herein, a protocol for the fully automated, two-stage derivatization of human blood-based samples in line with GC-[Orbitrap] mass spectrometry (MS)-based metabolomics is described. The protocol delivers a sample-to-sample runtime of 31 min, being suitable for better throughput routine metabolomic analysis. Key features • Direct and rapid methoximation on vial followed by silylation of metabolites in various blood matrices. • Measure ~40 samples per 24 h, identifying > 70 metabolites. • Quantitative reproducibility of routinely measured metabolites with coefficients of variation (CVs) < 30%. • Requires a Thermo ScientificTM TriPlusTM RSH (or comparable) autosampler equipped with incubator/agitator, cooled drawer, and automatic tool change (ATC) station equipped with liquid handling tools. Graphical overview Workflow for profiling metabolites in human blood using automated derivatization.

Zobrazit více v PubMed

Horning E. C. and Horning M. G.(1971). Human Metabolic Profiles Obtained by GC and GC/MS. J Chromatogr Sci. 9(3): 129-140.

Kitagawa T., Smith B. A. and Brown E. S.(1975). Gas—Liquid Chromatography of Phenylalanine and Its Metabolites in Serum and Urine of Various Hyperphenylalaninemic Subjects, Their Relatives, and Controls. Clin Chem. 21(6): 735-740. PubMed

Dunn W. B., Broadhurst D., Begley P., Zelena E., Francis-McIntyre S., Anderson N., Brown M., Knowles J. D., Halsall A., et al. .(2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 6(7): 1060-1083. PubMed

Deng C., Shang C., Hu Y. and Zhang X.(2002). Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography–mass spectrometry. J Chromatogr B. 775(1): 115-120. PubMed

McDade T. W., Williams S. and Snodgrass J. J.(2007). What a drop can do: Dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography. 44(4): 899-925. PubMed

Vargas Medina D. A., Maciel E. V. S. and Lanças F. M.(2023). Modern automated sample preparation for the determination of organic compounds: A review on robotic and on-flow systems. TrAC, Trends Anal Chem. 166: 117171.

Costa R.(2014). Newly Introduced Sample Preparation Techniques: Towards Miniaturization. Crit Rev Anal Chem. 44(4): 299-310. PubMed

Hübschmann H.(2022). Automated Sample Preparation. In: Automated Sample Preparation. ISBN: 9783527345076. Wiley-VCH Verlag GmbH.

Dettmer K., Aronov P. A. and Hammock B. D.(2007). Mass spectrometry‐based metabolomics. Mass Spectrom Rev. 26(1): 51-78. PubMed PMC

Moldoveanu S. C. and David V.(2019). Derivatization Methods in GC and GC/MS. In: Gas Chromatography- Derivatization, Sample Preparation, Application(Vol. 32, pp. 137–144). IntechOpen.

Kopka J., Schauer N., Krueger S., Birkemeyer C., Usadel B., Bergmuller E., Dormann P., Weckwerth W., Gibon Y., Stitt M., et al. .(2005). GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics. 21(8): 1635-1638. PubMed

Schauer N., Steinhauser D., Strelkov S., Schomburg D., Allison G., Moritz T., Lundgren K., Roessner-Tunali U., Forbes M. G., Willmitzer L., et al. .(2005). GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579(6): 1332-1337. PubMed

Engel B., Suralik P. and Marchetti‐Deschmann M.(2020). Critical considerations for trimethylsilyl derivatives of 24 primary metabolites measured by gas chromatography–tandem mass spectrometry. Sep Sci Plus. 3(9): 407-418.

Kanani H. H. and Klapa M. I.(2007). Data correction strategy for metabolomics analysis using gas chromatography–mass spectrometry. Metab Eng. 9(1): 39-51. PubMed

Fritsche-Guenther R., Gloaguen Y., Bauer A., Opialla T., Kempa S., Fleming C. A., Redmond H. P. and Kirwan J. A.(2021). Optimized Workflow for On-Line Derivatization for Targeted Metabolomics Approach by Gas Chromatography-Mass Spectrometry. Metabolites. 11(12): 888. PubMed PMC

Zarate E., Boyle V., Rupprecht U., Green S., Villas-Boas S., Baker P. and Pinu F.(2017). Fully Automated Trimethylsilyl(TMS) Derivatisation Protocol for Metabolite Profiling by GC-MS. Metabolites. 7(1): 1. PubMed PMC

Miyagawa H. and Bamba T.(2019). Comparison of sequential derivatization with concurrent methods for GC/MS-based metabolomics. J Biosci Bioeng. 127(2): 160-168. PubMed

World Health Organization(2010). WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy. Retrieved from https://www.who.int/publications/i/item/9789241599221

van Den Dool H. and Dec. Kratz P.(1963). A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A. 11: 463-471. PubMed

Biomarker Analytical Laboratories(2021). SOP for metabolite profiling of seminal plasma via GC Orbitrap. Zenodo.

Biomarker Analytical Laboratories(2022). SOP for metabolite profiling of urine via GC-MS. Zenodo.

Lai Z., Tsugawa H., Wohlgemuth G., Mehta S., Mueller M., Zheng Y., Ogiwara A., Meissen J., Showalter M., Takeuchi K., et al. .(2017). Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods. 15(1): 53-56. PubMed PMC

Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., Arita M., et al. .(2015). MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 12(6): 523-526. PubMed PMC

Adams K. J., Pratt B., Bose N., Dubois L. G., L. St. John-Williams, Perrott K. M., Ky K., Kapahi P., Sharma V., MacCoss M. J., et al. .(2020). Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. J Proteome Res. 19(4): 1447-1458. PubMed PMC

Schilling B., Rardin M. J., MacLean B. X., Zawadzka A. M., Frewen B. E., Cusack M. P., Sorensen D. J., Bereman M. S., Jing E., Wu C. C., et al. .(2012). Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline. Mol Cell Proteomics. 11(5): 202-214. PubMed PMC

Price E. J., Palát J., Coufaliková K., Kukučka P., Codling G., Vitale C. M., Koudelka Å. and Klánová J.(2021). Open, High-Resolution EI+ Spectral Library of Anthropogenic Compounds. Front Public Health. 9: e622558. PubMed PMC

Sharma V., Eckels J., Schilling B., Ludwig C., Jaffe J. D., MacCoss M. J. and MacLean B.(2018). Panorama Public: A Public Repository for Quantitative Data Sets Processed in Skyline. Mol Cell Proteomics. 17(6): 1239-1244. PubMed PMC

Sharma V., Eckels J., Taylor G. K., Shulman N. J., Stergachis A. B., Joyner S. A., Yan P., Whiteaker J. R., Halusa G. N., Schilling B., et al. .(2014). Panorama: A Targeted Proteomics Knowledge Base. J Proteome Res. 13(9): 4205-4210. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...