Automated Sequential Derivatization for Gas Chromatography-[Orbitrap] Mass Spectrometry-based Metabolite Profiling of Human Blood-based Samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40084079
PubMed Central
PMC11896771
DOI
10.21769/bioprotoc.5196
PII: e5196
Knihovny.cz E-zdroje
- Klíčová slova
- Automation, Derivatization, Gas chromatography–mass spectrometry (GC–MS), Metabolite profiling, Thermo ScientificTM TriPlusTM RSH,
- Publikační typ
- časopisecké články MeSH
Many small molecules require derivatization to increase their volatility and to be amenable to gas chromatographic (GC) separation. Derivatization is usually time-consuming, and typical batch-wise procedures increase sample variability. Sequential automation of derivatization via robotic liquid handling enables the overlapping of sample preparation and analysis, maximizing time efficiency and minimizing variability. Herein, a protocol for the fully automated, two-stage derivatization of human blood-based samples in line with GC-[Orbitrap] mass spectrometry (MS)-based metabolomics is described. The protocol delivers a sample-to-sample runtime of 31 min, being suitable for better throughput routine metabolomic analysis. Key features • Direct and rapid methoximation on vial followed by silylation of metabolites in various blood matrices. • Measure ~40 samples per 24 h, identifying > 70 metabolites. • Quantitative reproducibility of routinely measured metabolites with coefficients of variation (CVs) < 30%. • Requires a Thermo ScientificTM TriPlusTM RSH (or comparable) autosampler equipped with incubator/agitator, cooled drawer, and automatic tool change (ATC) station equipped with liquid handling tools. Graphical overview Workflow for profiling metabolites in human blood using automated derivatization.
CTC Analytics AG Zwingen Switzerland
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic
Zobrazit více v PubMed
Horning E. C. and Horning M. G.(1971). Human Metabolic Profiles Obtained by GC and GC/MS. J Chromatogr Sci. 9(3): 129-140.
Kitagawa T., Smith B. A. and Brown E. S.(1975). Gas—Liquid Chromatography of Phenylalanine and Its Metabolites in Serum and Urine of Various Hyperphenylalaninemic Subjects, Their Relatives, and Controls. Clin Chem. 21(6): 735-740. PubMed
Dunn W. B., Broadhurst D., Begley P., Zelena E., Francis-McIntyre S., Anderson N., Brown M., Knowles J. D., Halsall A., et al. .(2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 6(7): 1060-1083. PubMed
Deng C., Shang C., Hu Y. and Zhang X.(2002). Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography–mass spectrometry. J Chromatogr B. 775(1): 115-120. PubMed
McDade T. W., Williams S. and Snodgrass J. J.(2007). What a drop can do: Dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography. 44(4): 899-925. PubMed
Vargas Medina D. A., Maciel E. V. S. and Lanças F. M.(2023). Modern automated sample preparation for the determination of organic compounds: A review on robotic and on-flow systems. TrAC, Trends Anal Chem. 166: 117171.
Costa R.(2014). Newly Introduced Sample Preparation Techniques: Towards Miniaturization. Crit Rev Anal Chem. 44(4): 299-310. PubMed
Hübschmann H.(2022). Automated Sample Preparation. In: Automated Sample Preparation. ISBN: 9783527345076. Wiley-VCH Verlag GmbH.
Dettmer K., Aronov P. A. and Hammock B. D.(2007). Mass spectrometry‐based metabolomics. Mass Spectrom Rev. 26(1): 51-78. PubMed PMC
Moldoveanu S. C. and David V.(2019). Derivatization Methods in GC and GC/MS. In: Gas Chromatography- Derivatization, Sample Preparation, Application(Vol. 32, pp. 137–144). IntechOpen.
Kopka J., Schauer N., Krueger S., Birkemeyer C., Usadel B., Bergmuller E., Dormann P., Weckwerth W., Gibon Y., Stitt M., et al. .(2005). GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics. 21(8): 1635-1638. PubMed
Schauer N., Steinhauser D., Strelkov S., Schomburg D., Allison G., Moritz T., Lundgren K., Roessner-Tunali U., Forbes M. G., Willmitzer L., et al. .(2005). GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579(6): 1332-1337. PubMed
Engel B., Suralik P. and Marchetti‐Deschmann M.(2020). Critical considerations for trimethylsilyl derivatives of 24 primary metabolites measured by gas chromatography–tandem mass spectrometry. Sep Sci Plus. 3(9): 407-418.
Kanani H. H. and Klapa M. I.(2007). Data correction strategy for metabolomics analysis using gas chromatography–mass spectrometry. Metab Eng. 9(1): 39-51. PubMed
Fritsche-Guenther R., Gloaguen Y., Bauer A., Opialla T., Kempa S., Fleming C. A., Redmond H. P. and Kirwan J. A.(2021). Optimized Workflow for On-Line Derivatization for Targeted Metabolomics Approach by Gas Chromatography-Mass Spectrometry. Metabolites. 11(12): 888. PubMed PMC
Zarate E., Boyle V., Rupprecht U., Green S., Villas-Boas S., Baker P. and Pinu F.(2017). Fully Automated Trimethylsilyl(TMS) Derivatisation Protocol for Metabolite Profiling by GC-MS. Metabolites. 7(1): 1. PubMed PMC
Miyagawa H. and Bamba T.(2019). Comparison of sequential derivatization with concurrent methods for GC/MS-based metabolomics. J Biosci Bioeng. 127(2): 160-168. PubMed
World Health Organization(2010). WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy. Retrieved from https://www.who.int/publications/i/item/9789241599221
van Den Dool H. and Dec. Kratz P.(1963). A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A. 11: 463-471. PubMed
Biomarker Analytical Laboratories(2021). SOP for metabolite profiling of seminal plasma via GC Orbitrap. Zenodo.
Biomarker Analytical Laboratories(2022). SOP for metabolite profiling of urine via GC-MS. Zenodo.
Lai Z., Tsugawa H., Wohlgemuth G., Mehta S., Mueller M., Zheng Y., Ogiwara A., Meissen J., Showalter M., Takeuchi K., et al. .(2017). Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods. 15(1): 53-56. PubMed PMC
Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., Arita M., et al. .(2015). MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 12(6): 523-526. PubMed PMC
Adams K. J., Pratt B., Bose N., Dubois L. G., L. St. John-Williams, Perrott K. M., Ky K., Kapahi P., Sharma V., MacCoss M. J., et al. .(2020). Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. J Proteome Res. 19(4): 1447-1458. PubMed PMC
Schilling B., Rardin M. J., MacLean B. X., Zawadzka A. M., Frewen B. E., Cusack M. P., Sorensen D. J., Bereman M. S., Jing E., Wu C. C., et al. .(2012). Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline. Mol Cell Proteomics. 11(5): 202-214. PubMed PMC
Price E. J., Palát J., Coufaliková K., Kukučka P., Codling G., Vitale C. M., Koudelka Å. and Klánová J.(2021). Open, High-Resolution EI+ Spectral Library of Anthropogenic Compounds. Front Public Health. 9: e622558. PubMed PMC
Sharma V., Eckels J., Schilling B., Ludwig C., Jaffe J. D., MacCoss M. J. and MacLean B.(2018). Panorama Public: A Public Repository for Quantitative Data Sets Processed in Skyline. Mol Cell Proteomics. 17(6): 1239-1244. PubMed PMC
Sharma V., Eckels J., Taylor G. K., Shulman N. J., Stergachis A. B., Joyner S. A., Yan P., Whiteaker J. R., Halusa G. N., Schilling B., et al. .(2014). Panorama: A Targeted Proteomics Knowledge Base. J Proteome Res. 13(9): 4205-4210. PubMed PMC