Differential Effects of Sustained Manual Pressure Stimulation According to Site of Action

. 2019 ; 13 () : 722. [epub] 20190717

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31379481

Sustained pressure stimulation of the body surface has been used in several physiotherapeutic techniques, such as reflex locomotion therapy. Clinical observations of global motor responses and subsequent motor behavioral changes after stimulation in certain sites suggest modulation of central sensorimotor control, however, the neuroanatomical correlates remain undescribed. We hypothesized that different body sites would specifically influence the sensorimotor system during the stimulation. We tested the hypothesis using functional magnetic resonance imaging (fMRI) in thirty healthy volunteers (mean age 24.2) scanned twice during intermittent manual pressure stimulation, once at the right lateral heel according to reflex locomotion therapy, and once at the right lateral ankle (control site). A flexible modeling approach with finite impulse response basis functions was employed since non-canonical hemodynamic response was expected. Subsequently, a clustering algorithm was used to separate areas with differential timecourses. Stimulation at both sites induced responses throughout the sensorimotor system that could be mostly separated into two anti-correlated subsystems with transient positive or negative signal change and rapid adaptation, although in heel stimulation, insulo-opercular cortices and pons showed sustained activation. In direct voxel-wise comparison, heel stimulation was associated with significantly higher activation levels in the contralateral primary motor cortex and decreased activation in the posterior parietal cortex. Thus, we demonstrate that the manual pressure stimulation affects multiple brain structures involved in motor control and the choice of stimulation site impacts the shape and amplitude of the blood oxygenation level-dependent response. We further discuss the relationship between the affected structures and behavioral changes after reflex locomotion therapy.

Zobrazit více v PubMed

Apkarian A. V., Bushnell M. C., Treede R.-D., Zubieta J.-K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. PubMed DOI

Beissner F., Meissner K., Bär K.-J., Napadow V. (2013). The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. PubMed DOI PMC

Boorman L., Kennerley A. J., Johnston D., Jones M., Zheng Y., Redgrave P., et al. (2010). Negative blood oxygen level dependence in the rat: a model for investigating the role of suppression in neurovascular coupling. PubMed DOI PMC

Caliński T., Harabasz J. (1974). A dendrite method for cluster analysis. DOI

Chipchase L. S., Schabrun S. M., Hodges P. W. (2011). Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. PubMed DOI

Christova M., Rafolt D., Golaszewski S., Gallasch E. (2011). Outlasting corticomotor excitability changes induced by 25 Hz whole-hand mechanical stimulation. PubMed DOI

Chung Y. G., Han S. W., Kim H.-S., Chung S.-C., Park J.-Y., Wallraven C., et al. (2014). Intra- and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation. PubMed DOI PMC

Chung Y. G., Han S. W., Kim H.-S., Chung S.-C., Park J.-Y., Wallraven C., et al. (2015). Adaptation of cortical activity to sustained pressure stimulation on the fingertip. PubMed DOI PMC

Dale A. M. (1999). Optimal experimental design for event-related fMRI. PubMed PMC

Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. PubMed DOI

Devor A., Hillman E. M. C., Tian P., Waeber C., Teng I. C., Ruvinskaya L., et al. (2008). Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. PubMed DOI PMC

Diedrichsen J., Maderwald S., Küper M., Thürling M., Rabe K., Gizewski E. R., et al. (2011). Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. PubMed DOI

Dyson K. S., Miron J.-P., Drew T. (2014). Differential modulation of descending signals from the reticulospinal system during reaching and locomotion. PubMed DOI

Eickhoff S. B., Paus T., Caspers S., Grosbras M.-H., Evans A. C., Zilles K., et al. (2007). Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. PubMed DOI

Foerster O. (1933). The dermatomes in man. DOI

Gallasch E., Christova M., Kunz A., Rafolt D., Golaszewski S. (2015). Modulation of sensorimotor cortex by repetitive peripheral magnetic stimulation. PubMed DOI PMC

Glover G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. PubMed DOI

Golaszewski S. M., Bergmann J., Christova M., Kunz A. B., Kronbichler M., Rafolt D., et al. (2012). Modulation of motor cortex excitability by different levels of whole-hand afferent electrical stimulation. PubMed DOI

Grabner G., Janke A. L., Budge M. M., Smith D., Pruessner J., Collins D. L. (2006). Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. PubMed DOI

Grillner S., Wallén P. (1985). Central pattern generators for locomotion, with special reference to vertebrates. PubMed DOI

Hao Y., Manor B., Liu J., Zhang K., Chai Y., Lipsitz L., et al. (2013). A novel MRI-compatible tactile stimulator for cortical mapping of foot sole pressure stimuli with fMRI. PubMed DOI PMC

Hirschauer T. J., Buford J. A. (2015). Bilateral force transients in the upper limbs evoked by single-pulse microstimulation in the pontomedullary reticular formation. PubMed DOI PMC

Hlushchuk Y., Hari R. (2006). Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. PubMed DOI PMC

Hok P., Opavský J., Kutín M., Tüdös Z., Kaňovský P., Hluštík P. (2017). Modulation of the sensorimotor system by sustained manual pressure stimulation. PubMed DOI

Hu D., Huang L. (2015). Negative hemodynamic response in the cortex: evidence opposing neuronal deactivation revealed via optical imaging and electrophysiological recording. PubMed DOI PMC

Hu L., Zhang L., Chen R., Yu H., Li H., Mouraux A. (2015). The primary somatosensory cortex and the insula contribute differently to the processing of transient and sustained nociceptive and non-nociceptive somatosensory inputs. PubMed DOI PMC

Huffman K. J., Krubitzer L. (2001). Thalamo-cortical connections of areas 3a and M1 in marmoset monkeys. PubMed DOI

Ide M., Hidaka S., Ikeda H., Wada M. (2016). Neural mechanisms underlying touch-induced visual perceptual suppression: an fMRI study. PubMed DOI PMC

Igelström K. M., Graziano M. S. A. (2017). The inferior parietal lobule and temporoparietal junction: a network perspective. PubMed DOI

Jahn K., Deutschländer A., Stephan T., Kalla R., Wiesmann M., Strupp M., et al. (2008). Imaging human supraspinal locomotor centers in brainstem and cerebellum. PubMed DOI

Jenkinson M. (2003). Fast, automated, N-dimensional phase-unwrapping algorithm. PubMed DOI

Jenkinson M., Bannister P., Brady M., Smith S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. PubMed DOI

Jenkinson M., Beckmann C. F., Behrens T. E. J., Woolrich M. W., Smith S. M. (2012). FSL. PubMed DOI

Johansson R. S., Flanagan J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. PubMed DOI

Jung M. W., Landenberger M., Jung T., Lindenthal T., Philippi H. (2017). Vojta therapy and neurodevelopmental treatment in children with infantile postural asymmetry: a randomised controlled trial. PubMed DOI PMC

Kaelin-Lang A., Luft A. R., Sawaki L., Burstein A. H., Sohn Y. H., Cohen L. G. (2002). Modulation of human corticomotor excitability by somatosensory input. PubMed DOI PMC

Kawashima R., O’Sullivan B. T., Roland P. E. (1995). Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the “mind’s eye”. PubMed DOI PMC

Kayalioglu G. (2009). “Chapter 10 - Projections from the Spinal Cord to the Brain,” in DOI

Kurth F., Zilles K., Fox P. T., Laird A. R., Eickhoff S. B. (2010). A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. PubMed DOI PMC

la Fougère C., Zwergal A., Rominger A., Förster S., Fesl G., Dieterich M., et al. (2010). Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison. PubMed DOI

Laufens G., Poltz W., Jugelt E., Prinz E., Reimann G., Van Slobbe T. (1995). Motor improvements in multiple-sclerosis patients by Vojta physiotherapy and the influence of treatment positions.

Laufens G., Seitz S., Staenicke G. (1991). Vergleichend biologische Grundlagen zur angeborenen Lokomotion insbesondere zum “reflektorischen Kriechen” nach Vojta.

Leung Y. Y., Bensmaïa S. J., Hsiao S. S., Johnson K. O. (2005). Time-course of vibratory adaptation and recovery in cutaneous mechanoreceptive afferents. PubMed DOI PMC

Lewis L. D., Setsompop K., Rosen B. R., Polimeni J. R. (2018). Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI. PubMed DOI PMC

Liu J., Duffy B. A., Bernal-Casas D., Fang Z., Lee J. H. (2017). Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies. PubMed DOI PMC

Long X., Goltz D., Margulies D. S., Nierhaus T., Villringer A. (2014). Functional connectivity-based parcellation of the human sensorimotor cortex. PubMed DOI

Marconi B., Filippi G. M., Koch G., Pecchioli C., Salerno S., Don R., et al. (2008). Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. PubMed DOI

Marxen M., Cassidy R. J., Dawson T. L., Ross B., Graham S. J. (2012). Transient and sustained components of the sensorimotor BOLD response in fMRI. PubMed DOI PMC

Merabet L. B., Swisher J. D., McMains S. A., Halko M. A., Amedi A., Pascual-Leone A., et al. (2007). Combined activation and deactivation of visual cortex during tactile sensory processing. PubMed DOI

Miura N., Akitsuki Y., Sekiguchi A., Kawashima R. (2013). Activity in the primary somatosensory cortex induced by reflexological stimulation is unaffected by pseudo-information: a functional magnetic resonance imaging study. PubMed DOI PMC

Müller H. (1974). Comment on V.Vojta’s: early diagnosis and therapy of cerebral disturbances of motility in infancy (author’s transl). PubMed

Mullinger K. J., Mayhew S. D., Bagshaw A. P., Bowtell R., Francis S. T. (2014). Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans. PubMed DOI

Nieuwenhuys R., Voogd J., van Huijzen C. (2008).

Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. PubMed DOI

Opavský J., Šlachtová M., Kutín M., Hok P., Uhlír̃ P., Opavská H., et al. (2018). The effects of sustained manual pressure stimulation according to Vojta Therapy on heart rate variability. PubMed DOI

Powell J., Pandyan A. D., Granat M., Cameron M., Stott D. J. (1999). Electrical stimulation of wrist extensors in poststroke hemiplegia. PubMed DOI

Pruim R. H. R., Mennes M., Buitelaar J. K., Beckmann C. F. (2015a). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. PubMed DOI

Pruim R. H. R., Mennes M., van Rooij D., Llera A., Buitelaar J. K., Beckmann C. F. (2015b). ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. PubMed DOI

Qiu K., Jing M., Sun R., Yang J., Liu X., He Z., et al. (2016). The status of the quality control in acupuncture-neuroimaging studies. PubMed DOI PMC

Rencher A. C., Christensen W. F. (2012). “Cluster Analysis,” in DOI

Rosenkranz K., Rothwell J. C. (2003). Differential effect of muscle vibration on intracortical inhibitory circuits in humans. PubMed DOI PMC

Sanz-Esteban I., Calvo-Lobo C., Ríos-Lago M., Álvarez-Linera J., Muñoz-García D., Rodríguez-Sanz D. (2018). Mapping the human brain during a specific Vojta’s tactile input: the ipsilateral putamen’s role. PubMed DOI PMC

Smith C. A., Levett K. M., Collins C. T., Dahlen H. G., Ee C. C., Suganuma M. (2018). Massage, reflexology and other manual methods for pain management in labour. PubMed DOI PMC

Smith S. M. (2002). Fast robust automated brain extraction. PubMed DOI PMC

Takakusaki K. (2013). Neurophysiology of gait: from the spinal cord to the frontal lobe. PubMed DOI

Tal Z., Geva R., Amedi A. (2017). Positive and negative somatotopic BOLD responses in contralateral versus ipsilateral penfield homunculus. PubMed DOI PMC

Uddin L. Q. (2015). Salience processing and insular cortical function and dysfunction. PubMed DOI

Usichenko T. I., Wesolowski T., Lotze M. (2015). Verum and sham acupuncture exert distinct cerebral activation in pain processing areas: a crossover fMRI investigation in healthy volunteers. PubMed DOI

Vazquez A. L., Fukuda M., Kim S.-G. (2018). Inhibitory neuron activity contributions to hemodynamic responses and metabolic load examined using an inhibitory optogenetic mouse model. PubMed DOI PMC

Vojta V. (1973). Early diagnosis and therapy of cerebral movement disorders in childhood. C. Reflexogenous locomotion - reflex creeping and reflex turning. C1. The kinesiologic content and connection with the tonic neck reflexes. PubMed

Vojta V., Peters A. (2007).

Wall M. E., Rechtsteiner A., Rocha L. M. (2003). “Singular value decomposition and principal component analysis,” in DOI

Wong J. J., Shearer H. M., Mior S., Jacobs C., Côté P., Randhawa K., et al. (2016). Are manual therapies, passive physical modalities, or acupuncture effective for the management of patients with whiplash-associated disorders or neck pain and associated disorders? An update of the bone and joint decade task force on neck pain and its associated disorders by the OPTIMa collaboration. PubMed DOI

Woolrich M. W., Behrens T. E. J., Beckmann C. F., Jenkinson M., Smith S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. PubMed DOI

Woolrich M. W., Ripley B. D., Brady M., Smith S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. PubMed DOI

Worsley K. J. (2001). “Statistical analysis of activation images,” in

Wu M.-T., Sheen J.-M., Chuang K.-H., Yang P., Chin S.-L., Tsai C.-Y., et al. (2002). Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. PubMed DOI

Yin H., Liu Y., Li M., Hu D. (2011). Hemodynamic observation and spike recording explain the neuronal deactivation origin of negative response in rat. PubMed DOI

Ziemann U., Lönnecker S., Steinhoff B. J., Paulus W. (1996). Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...