Randomized Controlled Trial of Robot-Assisted Gait Training versus Therapist-Assisted Treadmill Gait Training as Add-on Therapy in Early Subacute Stroke Patients: The GAITFAST Study Protocol

. 2022 Dec 03 ; 12 (12) : . [epub] 20221203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36552120

Grantová podpora
FNOl, 0098892 Ministry of Health, Czech Republic - conceptual development of research organization

The GAITFAST study (gait recovery in patients after acute ischemic stroke) aims to compare the effects of treadmill-based robot-assisted gait training (RTGT) and therapist-assisted treadmill gait training (TTGT) added to conventional physical therapy in first-ever ischemic stroke patients. GAITFAST (Clinicaltrials.gov identifier: NCT04824482) was designed as a single-blind single-center prospective randomized clinical trial with two parallel groups and a primary endpoint of gait speed recovery up to 6 months after ischemic stroke. A total of 120 eligible and enrolled participants will be randomly allocated (1:1) in TTGT or RTGT. All enrolled patients will undergo a 2-week intensive inpatient rehabilitation including TTGT or RTGT followed by four clinical assessments (at the beginning of inpatient rehabilitation 8-15 days after stroke onset, after 2 weeks, and 3 and 6 months after the first assessment). Every clinical assessment will include the assessment of gait speed and walking dependency, fMRI activation measures, neurological and sensorimotor impairments, and gait biomechanics. In a random selection (1:2) of the 120 enrolled patients, multimodal magnetic resonance imaging (MRI) data will be acquired and analyzed. This study will provide insight into the mechanisms behind poststroke gait behavioral changes resulting from intensive rehabilitation including assisted gait training (RTGT or TTGT) in early subacute IS patients.

Zobrazit více v PubMed

Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Blaha M.J., Dai S., Ford E.S., Fox C.S., Franco S., et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2014 update: A report from the American Heart Association. Circulation. 2014;129:28–292. doi: 10.1161/01.cir.0000441139.02102.80. PubMed DOI PMC

Duncan P.W., Leaps Investigative The LEAPS Investigative Team. Sullivan K.J., Behrman A.L., Azen S.P., Wu S.S., Nadeau S.E., Dobkin B.H., Rose D.K., Tilson J.K. Protocol for the Locomotor Experience Applied Post-stroke (LEAPS) trial: A randomized controlled trial. BMC Neurol. 2007;7:39. doi: 10.1186/1471-2377-7-39. PubMed DOI PMC

Kwakkel G., Lannin N., Borschmann K., English C., Ali M., Churilov L., Saposnik G., Winstein C., van Wegen E., Wolf S.L., et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke. 2017;12:451–461. doi: 10.1177/1747493017711813. PubMed DOI

Marzolini S., Wu C.Y., Hussein R., Xiong L.Y., Kangatharan S., Peni A., Cooper C.R., Lau K.S.K., Nzodjou Makhdoom G., Pakosh M., et al. Associations Between Time After Stroke and Exercise Training Outcomes: A Meta-Regression Analysis. J. Am. Heart Assoc. 2021;10:e022588. doi: 10.1161/JAHA.121.022588. PubMed DOI PMC

Small S.L., Hlustik P., Noll D.C., Genovese C., Solodkin A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain. 2002;125:1544–1557. doi: 10.1093/brain/awf148. PubMed DOI

Johansen-Berg H., Dawes H., Guy C., Smith S.M., Wade D.T., Matthews P.M. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. 2002;125:2731–2742. doi: 10.1093/brain/awf282. PubMed DOI

Kerr A.L., Cheng S.Y., Jones T.A. Experience-dependent neural plasticity in the adult damaged brain. J. Commun. Disord. 2011;44:538–548. doi: 10.1016/j.jcomdis.2011.04.011. PubMed DOI PMC

Kleim J.A., Barbay S., Nudo R.J. Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 1998;80:3321–3325. doi: 10.1152/jn.1998.80.6.3321. PubMed DOI

Oh W., Park C., Oh S., You S.J.H. Stage 2: Who Are the Best Candidates for Robotic Gait Training Rehabilitation in Hemiparetic Stroke? J. Clin. Med. 2021;10:5715. doi: 10.3390/jcm10235715. PubMed DOI PMC

Kim H., Park G., Shin J.-H., You J.H. Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: A randomised controlled trial. Sci. Rep. 2020;10:12461. doi: 10.1038/s41598-020-69367-3. PubMed DOI PMC

Pollock A., Baer G., Campbell P., Choo P.L., Forster A., Morris J., Pomeroy V.M., Langhorne P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014;4:CD001920. doi: 10.1002/14651858.CD001920.pub3. PubMed DOI PMC

Kwakkel G., Kollen B., Lindeman E. Understanding the pattern of functional recovery after stroke: Facts and theories. Restor. Neurol. Neurosci. 2004;22:281–299. PubMed

Nolan K.J., Karunakaran K.K., Chervin K., Monfett M.R., Bapineedu R.K., Jasey N.N., Oh-Park M. Robotic Exoskeleton Gait Training During Acute Stroke Inpatient Rehabilitation. Front. Neurorobot. 2020;14:581815. doi: 10.3389/fnbot.2020.581815. PubMed DOI PMC

Coleman E.R., Moudgal R., Lang K., Hyacinth H.I., Awosika O.O., Kissela B.M., Feng W. Early Rehabilitation After Stroke: A Narrative Review. Curr. Atheroscler. Rep. 2017;19:59. doi: 10.1007/s11883-017-0686-6. PubMed DOI PMC

Morone G., Paolucci S., Cherubini A., De Angelis D., Venturiero V., Coiro P., Iosa M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017;13:1303–1311. doi: 10.2147/NDT.S114102. PubMed DOI PMC

Mehrholz J., Thomas S., Werner C., Kugler J., Pohl M., Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2020;10:CD006185. doi: 10.1002/14651858.CD006185.pub5. PubMed DOI PMC

Ada L., Dean C.M., Lindley R. Randomized trial of treadmill training to improve walking in community-dwelling people after stroke: The AMBULATE trial. Int. J. Stroke. 2013;8:436–444. doi: 10.1111/j.1747-4949.2012.00934.x. PubMed DOI

Bishnoi A., Lee R., Hu Y., Mahoney J.R., Hernandez M.E. Effect of Treadmill Training Interventions on Spatiotemporal Gait Parameters in Older Adults with Neurological Disorders: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health. 2022;19:2824. doi: 10.3390/ijerph19052824. PubMed DOI PMC

Nascimento L.R., Boening A., Galli A., Polese J.C., Ada L. Treadmill walking improves walking speed and distance in ambulatory people after stroke and is not inferior to overground walking: A systematic review. J. Physiother. 2021;67:95–104. doi: 10.1016/j.jphys.2021.02.014. PubMed DOI

Lefeber N., Swinnen E., Kerckhofs E. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: A systematic review. Disabil. Rehabil. Assist. Technol. 2017;12:657–671. doi: 10.1080/17483107.2016.1235620. PubMed DOI

Bang D.H., Shin W.S. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial. NeuroRehabilitation. 2016;38:343–349. doi: 10.3233/NRE-161325. PubMed DOI

Moucheboeuf G., Griffier R., Gasq D., Glize B., Bouyer L., Dehail P., Cassoudesalle H. Effects of robotic gait training after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2020;63:518–534. doi: 10.1016/j.rehab.2020.02.008. PubMed DOI

Schwartz I., Sajin A., Fisher I., Neeb M., Shochina M., Katz-Leurer M., Meiner Z. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: A randomized controlled trial. PMR. 2009;1:516–523. doi: 10.1016/j.pmrj.2009.03.009. PubMed DOI

Morone G., Bragoni M., Iosa M., De Angelis D., Venturiero V., Coiro P., Pratesi L., Paolucci S. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil. Neural. Repair. 2011;25:636–644. doi: 10.1177/1545968311401034. PubMed DOI

Middleton A., Fritz S.L., Lusardi M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015;23:314–322. doi: 10.1123/japa.2013-0236. PubMed DOI PMC

Bland M.D., Sturmoski A., Whitson M., Connor L.T., Fucetola R., Huskey T., Corbetta M., Lang C.E. Prediction of discharge walking ability from initial assessment in a stroke inpatient rehabilitation facility population. Arch. Phys. Med. Rehabil. 2012;93:1441–1447. doi: 10.1016/j.apmr.2012.02.029. PubMed DOI PMC

Mehrholz J., Wagner K., Rutte K., Meissner D., Pohl M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch. Phys. Med. Rehabil. 2007;88:1314–1319. doi: 10.1016/j.apmr.2007.06.764. PubMed DOI

Luft A.R., Macko R.F., Forrester L.W., Villagra F., Ivey F., Sorkin J.D., Whitall J., McCombe-Waller S., Katzel L., Goldberg A.P., et al. Treadmill exercise activates subcortical neural networks and improves walking after stroke: A randomized controlled trial. Stroke. 2008;39:3341–3350. doi: 10.1161/STROKEAHA.108.527531. PubMed DOI PMC

Enzinger C., Dawes H., Johansen-Berg H., Wade D., Bogdanovic M., Collett J., Guy C., Kischka U., Ropele S., Fazekas F., et al. Brain activity changes associated with treadmill training after stroke. Stroke. 2009;40:2460–2467. doi: 10.1161/STROKEAHA.109.550053. PubMed DOI PMC

Burke E., Dobkin B.H., Noser E.A., Enney L.A., Cramer S.C. Predictors and biomarkers of treatment gains in a clinical stroke trial targeting the lower extremity. Stroke. 2014;45:2379–2384. doi: 10.1161/STROKEAHA.114.005436. PubMed DOI PMC

Jahn K., Deutschländer A., Stephan T., Strupp M., Wiesmann M., Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage. 2004;22:1722–1731. doi: 10.1016/j.neuroimage.2004.05.017. PubMed DOI

Boyne P., Doren S., Scholl V., Staggs E., Whitesel D., Maloney T., Awosika O., Kissela B., Dunning K., Vannest J. Functional magnetic resonance brain imaging of imagined walking to study locomotor function after stroke. Clin. Neurophysiol. 2020;132:167–177. doi: 10.1016/j.clinph.2020.11.009. PubMed DOI PMC

Kim B., Winstein C. Can Neurological Biomarkers of Brain Impairment Be Used to Predict Poststroke Motor Recovery? A Systematic Review. Neurorehabil. Neural. Repair. 2017;31:3–24. doi: 10.1177/1545968316662708. PubMed DOI

Lyden P. Using the National Institutes of Health Stroke Scale: A Cautionary Tale. Stroke. 2017;48:513–519. doi: 10.1161/STROKEAHA.116.015434. PubMed DOI

Hernández E.D., Forero S.M., Galeano C.P., Barbosa N.E., Sunnerhagen K.S., Alt Murphy M. Intra- and inter-rater reliability of Fugl-Meyer Assessment of Lower Extremity early after stroke. Braz. J. Phys. Ther. 2021;25:709–718. doi: 10.1016/j.bjpt.2020.12.002. PubMed DOI PMC

Fugl-Meyer A.R., Jääskö L., Leyman I., Olsson S., Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975;7:13–31. PubMed

Chiti G., Pantoni L. Use of Montreal Cognitive Assessment in patients with stroke. Stroke. 2014;45:3135–3140. doi: 10.1161/STROKEAHA.114.004590. PubMed DOI

Duffy L., Gajree S., Langhorne P., Stott D.J., Quinn T.J. Reliability (inter-rater agreement) of the Barthel Index for assessment of stroke survivors: Systematic review and meta-analysis. Stroke. 2013;44:462–468. doi: 10.1161/STROKEAHA.112.678615. PubMed DOI

Hiengkaew V., Jitaree K., Chaiyawat P. Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed "Up & Go" Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch. Phys. Med. Rehabil. 2012;93:1201–1208. doi: 10.1016/j.apmr.2012.01.014. PubMed DOI

Smith M.C., Barber P.A., Stinear C.M. The TWIST Algorithm Predicts Time to Walking Independently After Stroke. Neurorehabil. Neural. Repair. 2017;31:955–964. doi: 10.1177/1545968317736820. PubMed DOI

Kiper P., Rimini D., Falla D., Baba A., Rutkowski S., Maistrello L., Turolla A. Does the Score on the MRC Strength Scale Reflect Instrumented Measures of Maximal Torque and Muscle Activity in Post-Stroke Survivors? Sensors. 2021;21:8175. doi: 10.3390/s21248175. PubMed DOI PMC

Merletti R., Standards for Reporting EMG Data Int. Soc. Electrophysiol. Kinesiol. 2015. [(accessed on 12 June 2022)]. Available online: https://isek.org/wpcontent/uploads/2015/05/Standards-for-Reporting-EMG-Data.pdf.

Khobkhun F., Hollands M.A., Richards J., Ajjimaporn A. Can We Accurately Measure Axial Segment Coordination during Turning Using Inertial Measurement Units (IMUs)? Sensors. 2020;20:2518. doi: 10.3390/s20092518. PubMed DOI PMC

Felius R.A.W., Geerars M., Bruijn S.M., van Dieën J.H., Wouda N.C., Punt M. Reliability of IMU-Based Gait Assessment in Clinical Stroke Rehabilitation. Sensors. 2022;22:908. doi: 10.3390/s22030908. PubMed DOI PMC

Longatelli V., Pedrocchi A., Guanziroli E., Molteni F., Gandolla M. Robotic Exoskeleton Gait Training in Stroke: An Electromyography-Based Evaluation. Front. Neurorobot. 2021;15:733738. doi: 10.3389/fnbot.2021.733738. PubMed DOI PMC

Tilson J.K., Sullivan K.J., Cen S.Y., Rose D.K., Koradia C.H., Azen S.P., Duncan P. Locomotor Experience Applied Post Stroke (LEAPS) Investigative Team. Meaningful gait speed improvement during the first 60 days poststroke: Minimal clinically important difference. Phys. Ther. 2010;90:196–208. doi: 10.2522/ptj.20090079. PubMed DOI PMC

van Nunen M.P., Gerrits K.H., Konijnenbelt M., Janssen T.W., de Haan A. Recovery of walking ability using a robotic device in subacute stroke patients: A randomized controlled study. Disabil. Rehabil. Assist. Technol. 2015;10:141–148. doi: 10.3109/17483107.2013.873489. PubMed DOI

Cho D.Y., Park S.W., Lee M.J., Park D.S., Kim E.J. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: Focus on dependent ambulators. J. Phys. Ther. Sci. 2015;27:3053–3057. doi: 10.1589/jpts.27.3053. PubMed DOI PMC

Hok P., Opavský J., Labounek R., Kutín M., Šlachtová M., Tüdös Z., Kaňovský P., Hluštík P. Differential Effects of Sustained Manual Pressure Stimulation According to Site of Action. Front. Neurosci. 2019;13:722. doi: 10.3389/fnins.2019.00722. PubMed DOI PMC

Jakobsen J.C., Gluud C., Wetterslev J., Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials—A practical guide with flowcharts. BMC Med. Res. Methodol. 2017;17:162. doi: 10.1186/s12874-017-0442-1. PubMed DOI PMC

Kollen B., van de Port I., Lindeman E., Twisk J., Kwakkel G. Predicting improvement in gait after stroke: A longitudinal prospective study. Stroke. 2005;36:2676–2680. doi: 10.1161/01.STR.0000190839.29234.50. PubMed DOI

Xie L., Yoon B.H., Park C., You J.S.H. Optimal Intervention Timing for Robotic-Assisted Gait Training in Hemiplegic Stroke. Brain Sci. 2022;12:1058. doi: 10.3390/brainsci12081058. PubMed DOI PMC

Sadraee A., Paulus M., Ekhtiari H. fMRI as an outcome measure in clinical trials: A systematic review in clinicaltrials.gov. Brain. Behav. 2021;11:e02089. doi: 10.1002/brb3.2089. PubMed DOI PMC

Jones P.S., Pomeroy V.M., Wang J., Schlaug G., Marrapu S.T., Geva S., Rowe P.J., Chandler E., Kerr A., Baron J., et al. SWIFT-Cast investigators. Does stroke location predict walk speed response to gait rehabilitation? Hum. Brain. Mapp. 2016;37:689–703. doi: 10.1002/hbm.23059. PubMed DOI PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT04824482

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...