Randomized Controlled Trial of Robot-Assisted Gait Training versus Therapist-Assisted Treadmill Gait Training as Add-on Therapy in Early Subacute Stroke Patients: The GAITFAST Study Protocol
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FNOl, 0098892
Ministry of Health, Czech Republic - conceptual development of research organization
PubMed
36552120
PubMed Central
PMC9775673
DOI
10.3390/brainsci12121661
PII: brainsci12121661
Knihovny.cz E-zdroje
- Klíčová slova
- gait recovery, magnetic resonance imaging, neurorehabilitation, robot-assisted gait training, stroke,
- Publikační typ
- časopisecké články MeSH
The GAITFAST study (gait recovery in patients after acute ischemic stroke) aims to compare the effects of treadmill-based robot-assisted gait training (RTGT) and therapist-assisted treadmill gait training (TTGT) added to conventional physical therapy in first-ever ischemic stroke patients. GAITFAST (Clinicaltrials.gov identifier: NCT04824482) was designed as a single-blind single-center prospective randomized clinical trial with two parallel groups and a primary endpoint of gait speed recovery up to 6 months after ischemic stroke. A total of 120 eligible and enrolled participants will be randomly allocated (1:1) in TTGT or RTGT. All enrolled patients will undergo a 2-week intensive inpatient rehabilitation including TTGT or RTGT followed by four clinical assessments (at the beginning of inpatient rehabilitation 8-15 days after stroke onset, after 2 weeks, and 3 and 6 months after the first assessment). Every clinical assessment will include the assessment of gait speed and walking dependency, fMRI activation measures, neurological and sensorimotor impairments, and gait biomechanics. In a random selection (1:2) of the 120 enrolled patients, multimodal magnetic resonance imaging (MRI) data will be acquired and analyzed. This study will provide insight into the mechanisms behind poststroke gait behavioral changes resulting from intensive rehabilitation including assisted gait training (RTGT or TTGT) in early subacute IS patients.
Department of Rehabilitation University Hospital Olomouc 1 P Pavlova 6 779 00 Olomouc Czech Republic
Zobrazit více v PubMed
Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Blaha M.J., Dai S., Ford E.S., Fox C.S., Franco S., et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2014 update: A report from the American Heart Association. Circulation. 2014;129:28–292. doi: 10.1161/01.cir.0000441139.02102.80. PubMed DOI PMC
Duncan P.W., Leaps Investigative The LEAPS Investigative Team. Sullivan K.J., Behrman A.L., Azen S.P., Wu S.S., Nadeau S.E., Dobkin B.H., Rose D.K., Tilson J.K. Protocol for the Locomotor Experience Applied Post-stroke (LEAPS) trial: A randomized controlled trial. BMC Neurol. 2007;7:39. doi: 10.1186/1471-2377-7-39. PubMed DOI PMC
Kwakkel G., Lannin N., Borschmann K., English C., Ali M., Churilov L., Saposnik G., Winstein C., van Wegen E., Wolf S.L., et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke. 2017;12:451–461. doi: 10.1177/1747493017711813. PubMed DOI
Marzolini S., Wu C.Y., Hussein R., Xiong L.Y., Kangatharan S., Peni A., Cooper C.R., Lau K.S.K., Nzodjou Makhdoom G., Pakosh M., et al. Associations Between Time After Stroke and Exercise Training Outcomes: A Meta-Regression Analysis. J. Am. Heart Assoc. 2021;10:e022588. doi: 10.1161/JAHA.121.022588. PubMed DOI PMC
Small S.L., Hlustik P., Noll D.C., Genovese C., Solodkin A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain. 2002;125:1544–1557. doi: 10.1093/brain/awf148. PubMed DOI
Johansen-Berg H., Dawes H., Guy C., Smith S.M., Wade D.T., Matthews P.M. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. 2002;125:2731–2742. doi: 10.1093/brain/awf282. PubMed DOI
Kerr A.L., Cheng S.Y., Jones T.A. Experience-dependent neural plasticity in the adult damaged brain. J. Commun. Disord. 2011;44:538–548. doi: 10.1016/j.jcomdis.2011.04.011. PubMed DOI PMC
Kleim J.A., Barbay S., Nudo R.J. Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 1998;80:3321–3325. doi: 10.1152/jn.1998.80.6.3321. PubMed DOI
Oh W., Park C., Oh S., You S.J.H. Stage 2: Who Are the Best Candidates for Robotic Gait Training Rehabilitation in Hemiparetic Stroke? J. Clin. Med. 2021;10:5715. doi: 10.3390/jcm10235715. PubMed DOI PMC
Kim H., Park G., Shin J.-H., You J.H. Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: A randomised controlled trial. Sci. Rep. 2020;10:12461. doi: 10.1038/s41598-020-69367-3. PubMed DOI PMC
Pollock A., Baer G., Campbell P., Choo P.L., Forster A., Morris J., Pomeroy V.M., Langhorne P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014;4:CD001920. doi: 10.1002/14651858.CD001920.pub3. PubMed DOI PMC
Kwakkel G., Kollen B., Lindeman E. Understanding the pattern of functional recovery after stroke: Facts and theories. Restor. Neurol. Neurosci. 2004;22:281–299. PubMed
Nolan K.J., Karunakaran K.K., Chervin K., Monfett M.R., Bapineedu R.K., Jasey N.N., Oh-Park M. Robotic Exoskeleton Gait Training During Acute Stroke Inpatient Rehabilitation. Front. Neurorobot. 2020;14:581815. doi: 10.3389/fnbot.2020.581815. PubMed DOI PMC
Coleman E.R., Moudgal R., Lang K., Hyacinth H.I., Awosika O.O., Kissela B.M., Feng W. Early Rehabilitation After Stroke: A Narrative Review. Curr. Atheroscler. Rep. 2017;19:59. doi: 10.1007/s11883-017-0686-6. PubMed DOI PMC
Morone G., Paolucci S., Cherubini A., De Angelis D., Venturiero V., Coiro P., Iosa M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017;13:1303–1311. doi: 10.2147/NDT.S114102. PubMed DOI PMC
Mehrholz J., Thomas S., Werner C., Kugler J., Pohl M., Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2020;10:CD006185. doi: 10.1002/14651858.CD006185.pub5. PubMed DOI PMC
Ada L., Dean C.M., Lindley R. Randomized trial of treadmill training to improve walking in community-dwelling people after stroke: The AMBULATE trial. Int. J. Stroke. 2013;8:436–444. doi: 10.1111/j.1747-4949.2012.00934.x. PubMed DOI
Bishnoi A., Lee R., Hu Y., Mahoney J.R., Hernandez M.E. Effect of Treadmill Training Interventions on Spatiotemporal Gait Parameters in Older Adults with Neurological Disorders: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health. 2022;19:2824. doi: 10.3390/ijerph19052824. PubMed DOI PMC
Nascimento L.R., Boening A., Galli A., Polese J.C., Ada L. Treadmill walking improves walking speed and distance in ambulatory people after stroke and is not inferior to overground walking: A systematic review. J. Physiother. 2021;67:95–104. doi: 10.1016/j.jphys.2021.02.014. PubMed DOI
Lefeber N., Swinnen E., Kerckhofs E. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: A systematic review. Disabil. Rehabil. Assist. Technol. 2017;12:657–671. doi: 10.1080/17483107.2016.1235620. PubMed DOI
Bang D.H., Shin W.S. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial. NeuroRehabilitation. 2016;38:343–349. doi: 10.3233/NRE-161325. PubMed DOI
Moucheboeuf G., Griffier R., Gasq D., Glize B., Bouyer L., Dehail P., Cassoudesalle H. Effects of robotic gait training after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2020;63:518–534. doi: 10.1016/j.rehab.2020.02.008. PubMed DOI
Schwartz I., Sajin A., Fisher I., Neeb M., Shochina M., Katz-Leurer M., Meiner Z. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: A randomized controlled trial. PMR. 2009;1:516–523. doi: 10.1016/j.pmrj.2009.03.009. PubMed DOI
Morone G., Bragoni M., Iosa M., De Angelis D., Venturiero V., Coiro P., Pratesi L., Paolucci S. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil. Neural. Repair. 2011;25:636–644. doi: 10.1177/1545968311401034. PubMed DOI
Middleton A., Fritz S.L., Lusardi M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015;23:314–322. doi: 10.1123/japa.2013-0236. PubMed DOI PMC
Bland M.D., Sturmoski A., Whitson M., Connor L.T., Fucetola R., Huskey T., Corbetta M., Lang C.E. Prediction of discharge walking ability from initial assessment in a stroke inpatient rehabilitation facility population. Arch. Phys. Med. Rehabil. 2012;93:1441–1447. doi: 10.1016/j.apmr.2012.02.029. PubMed DOI PMC
Mehrholz J., Wagner K., Rutte K., Meissner D., Pohl M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch. Phys. Med. Rehabil. 2007;88:1314–1319. doi: 10.1016/j.apmr.2007.06.764. PubMed DOI
Luft A.R., Macko R.F., Forrester L.W., Villagra F., Ivey F., Sorkin J.D., Whitall J., McCombe-Waller S., Katzel L., Goldberg A.P., et al. Treadmill exercise activates subcortical neural networks and improves walking after stroke: A randomized controlled trial. Stroke. 2008;39:3341–3350. doi: 10.1161/STROKEAHA.108.527531. PubMed DOI PMC
Enzinger C., Dawes H., Johansen-Berg H., Wade D., Bogdanovic M., Collett J., Guy C., Kischka U., Ropele S., Fazekas F., et al. Brain activity changes associated with treadmill training after stroke. Stroke. 2009;40:2460–2467. doi: 10.1161/STROKEAHA.109.550053. PubMed DOI PMC
Burke E., Dobkin B.H., Noser E.A., Enney L.A., Cramer S.C. Predictors and biomarkers of treatment gains in a clinical stroke trial targeting the lower extremity. Stroke. 2014;45:2379–2384. doi: 10.1161/STROKEAHA.114.005436. PubMed DOI PMC
Jahn K., Deutschländer A., Stephan T., Strupp M., Wiesmann M., Brandt T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage. 2004;22:1722–1731. doi: 10.1016/j.neuroimage.2004.05.017. PubMed DOI
Boyne P., Doren S., Scholl V., Staggs E., Whitesel D., Maloney T., Awosika O., Kissela B., Dunning K., Vannest J. Functional magnetic resonance brain imaging of imagined walking to study locomotor function after stroke. Clin. Neurophysiol. 2020;132:167–177. doi: 10.1016/j.clinph.2020.11.009. PubMed DOI PMC
Kim B., Winstein C. Can Neurological Biomarkers of Brain Impairment Be Used to Predict Poststroke Motor Recovery? A Systematic Review. Neurorehabil. Neural. Repair. 2017;31:3–24. doi: 10.1177/1545968316662708. PubMed DOI
Lyden P. Using the National Institutes of Health Stroke Scale: A Cautionary Tale. Stroke. 2017;48:513–519. doi: 10.1161/STROKEAHA.116.015434. PubMed DOI
Hernández E.D., Forero S.M., Galeano C.P., Barbosa N.E., Sunnerhagen K.S., Alt Murphy M. Intra- and inter-rater reliability of Fugl-Meyer Assessment of Lower Extremity early after stroke. Braz. J. Phys. Ther. 2021;25:709–718. doi: 10.1016/j.bjpt.2020.12.002. PubMed DOI PMC
Fugl-Meyer A.R., Jääskö L., Leyman I., Olsson S., Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975;7:13–31. PubMed
Chiti G., Pantoni L. Use of Montreal Cognitive Assessment in patients with stroke. Stroke. 2014;45:3135–3140. doi: 10.1161/STROKEAHA.114.004590. PubMed DOI
Duffy L., Gajree S., Langhorne P., Stott D.J., Quinn T.J. Reliability (inter-rater agreement) of the Barthel Index for assessment of stroke survivors: Systematic review and meta-analysis. Stroke. 2013;44:462–468. doi: 10.1161/STROKEAHA.112.678615. PubMed DOI
Hiengkaew V., Jitaree K., Chaiyawat P. Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed "Up & Go" Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch. Phys. Med. Rehabil. 2012;93:1201–1208. doi: 10.1016/j.apmr.2012.01.014. PubMed DOI
Smith M.C., Barber P.A., Stinear C.M. The TWIST Algorithm Predicts Time to Walking Independently After Stroke. Neurorehabil. Neural. Repair. 2017;31:955–964. doi: 10.1177/1545968317736820. PubMed DOI
Kiper P., Rimini D., Falla D., Baba A., Rutkowski S., Maistrello L., Turolla A. Does the Score on the MRC Strength Scale Reflect Instrumented Measures of Maximal Torque and Muscle Activity in Post-Stroke Survivors? Sensors. 2021;21:8175. doi: 10.3390/s21248175. PubMed DOI PMC
Merletti R., Standards for Reporting EMG Data Int. Soc. Electrophysiol. Kinesiol. 2015. [(accessed on 12 June 2022)]. Available online: https://isek.org/wpcontent/uploads/2015/05/Standards-for-Reporting-EMG-Data.pdf.
Khobkhun F., Hollands M.A., Richards J., Ajjimaporn A. Can We Accurately Measure Axial Segment Coordination during Turning Using Inertial Measurement Units (IMUs)? Sensors. 2020;20:2518. doi: 10.3390/s20092518. PubMed DOI PMC
Felius R.A.W., Geerars M., Bruijn S.M., van Dieën J.H., Wouda N.C., Punt M. Reliability of IMU-Based Gait Assessment in Clinical Stroke Rehabilitation. Sensors. 2022;22:908. doi: 10.3390/s22030908. PubMed DOI PMC
Longatelli V., Pedrocchi A., Guanziroli E., Molteni F., Gandolla M. Robotic Exoskeleton Gait Training in Stroke: An Electromyography-Based Evaluation. Front. Neurorobot. 2021;15:733738. doi: 10.3389/fnbot.2021.733738. PubMed DOI PMC
Tilson J.K., Sullivan K.J., Cen S.Y., Rose D.K., Koradia C.H., Azen S.P., Duncan P. Locomotor Experience Applied Post Stroke (LEAPS) Investigative Team. Meaningful gait speed improvement during the first 60 days poststroke: Minimal clinically important difference. Phys. Ther. 2010;90:196–208. doi: 10.2522/ptj.20090079. PubMed DOI PMC
van Nunen M.P., Gerrits K.H., Konijnenbelt M., Janssen T.W., de Haan A. Recovery of walking ability using a robotic device in subacute stroke patients: A randomized controlled study. Disabil. Rehabil. Assist. Technol. 2015;10:141–148. doi: 10.3109/17483107.2013.873489. PubMed DOI
Cho D.Y., Park S.W., Lee M.J., Park D.S., Kim E.J. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: Focus on dependent ambulators. J. Phys. Ther. Sci. 2015;27:3053–3057. doi: 10.1589/jpts.27.3053. PubMed DOI PMC
Hok P., Opavský J., Labounek R., Kutín M., Šlachtová M., Tüdös Z., Kaňovský P., Hluštík P. Differential Effects of Sustained Manual Pressure Stimulation According to Site of Action. Front. Neurosci. 2019;13:722. doi: 10.3389/fnins.2019.00722. PubMed DOI PMC
Jakobsen J.C., Gluud C., Wetterslev J., Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials—A practical guide with flowcharts. BMC Med. Res. Methodol. 2017;17:162. doi: 10.1186/s12874-017-0442-1. PubMed DOI PMC
Kollen B., van de Port I., Lindeman E., Twisk J., Kwakkel G. Predicting improvement in gait after stroke: A longitudinal prospective study. Stroke. 2005;36:2676–2680. doi: 10.1161/01.STR.0000190839.29234.50. PubMed DOI
Xie L., Yoon B.H., Park C., You J.S.H. Optimal Intervention Timing for Robotic-Assisted Gait Training in Hemiplegic Stroke. Brain Sci. 2022;12:1058. doi: 10.3390/brainsci12081058. PubMed DOI PMC
Sadraee A., Paulus M., Ekhtiari H. fMRI as an outcome measure in clinical trials: A systematic review in clinicaltrials.gov. Brain. Behav. 2021;11:e02089. doi: 10.1002/brb3.2089. PubMed DOI PMC
Jones P.S., Pomeroy V.M., Wang J., Schlaug G., Marrapu S.T., Geva S., Rowe P.J., Chandler E., Kerr A., Baron J., et al. SWIFT-Cast investigators. Does stroke location predict walk speed response to gait rehabilitation? Hum. Brain. Mapp. 2016;37:689–703. doi: 10.1002/hbm.23059. PubMed DOI PMC
ClinicalTrials.gov
NCT04824482