Investigating the thin film growth of [Ni(Hvanox)2] by microscopic and spectroscopic techniques
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39991063
PubMed Central
PMC11843256
DOI
10.1039/d4na01021c
PII: d4na01021c
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We have investigated [Ni(Hvanox)2] (H2vanox = o-vanillinoxime), a square-planar Ni(ii) complex, for the preparation of thin films using organic molecule evaporation. Low pressure experiments to prepare thin films were conducted at temperatures between 120-150 °C and thin films of increasing thicknesses [Ni(Hvanox)2] (16-336 nm) have been prepared on various substrates and been analyzed by microscopic and spectroscopic methods. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to reveal a rough surface morphology which exhibits a dense arrangement of elongated, rod and needle-like nanocrystals with random orientations. It also enabled us to follow the growth of the thin films by increasing thickness revealing the formation of a seeding layer. X-ray photoelectron spectroscopy (XPS and 3D ED), TEM and X-ray diffraction (XRD) were utilized to confirm the atomic structure and the elemental composition of the thin films.
See more in PubMed
Tschugaeff L. Dtsch B. Chem. Ges. 1905;38:2520–2522. doi: 10.1002/cber.19050380317. DOI
Smith A. G. Tasker P. A. White D. J. Coord. Chem. Rev. 2003;241:61–85. doi: 10.1016/S0010-8545(02)00310-7. DOI
Kukushkin V. Yu. Pombeiro A. J. L. Coord. Chem. Rev. 1999;181:147–175. doi: 10.1016/S0010-8545(98)00215-X. DOI
Chaudhuri P. Coord. Chem. Rev. 2003;243:143–190. doi: 10.1016/S0010-8545(03)00081-X. DOI
Stamatatos T. C. Escuer A. Abboud K. A. Raptopoulou C. P. Perlepes S. P. Christou G. Inorg. Chem. 2008;47:11825–11838. doi: 10.1021/ic801555e. PubMed DOI
Biswas B. Pieper U. Weyhermüller T. Chaudhuri P. Inorg. Chem. 2009;48:6781–6793. doi: 10.1021/ic9007608. PubMed DOI
Efthymiou C. G. Cunha-Silva L. Perlepes S. P. Brechin E. K. Inglis R. Evangelisti M. Papatriantafyllopoulou C. Dalton Trans. 2016;45:17409–17419. doi: 10.1039/C6DT03511F. PubMed DOI
Xu Y. Yin X. Huang Y. Du P. Zhang B. Chem.–Eur. J. 2015;21:4571–4575. doi: 10.1002/chem.201406642. PubMed DOI
Xiao F. Guo Y. Zeng Y. Adv. Synth. Catal. 2021;363:120–143. doi: 10.1002/adsc.202001093. DOI
Bolotin D. S. Bokach N. A. Demakova M. Ya. Kukushkin V. Yu. Chem. Rev. 2017;117:13039–13122. doi: 10.1021/acs.chemrev.7b00264. PubMed DOI
Medran N. S. La-Venia A. Testero S. A. RSC Adv. 2019;9:6804–6844. doi: 10.1039/C8RA10247C. PubMed DOI PMC
Pang H. Lu Q. Li Y. Gao F. Chem. Commun. 2009:7542. doi: 10.1039/B914898A. PubMed DOI
Karthikeyan B. Pandiyarajan T. Hariharan S. Ollakkan M. S. CrystEngComm. 2016;18:601–607. doi: 10.1039/C5CE02232K. DOI
Yao E. Xu S. Zhao F. Huang T. Li H. Zhao N. Yi J. Yang Y. Wang C. Catalysts. 2020;10:331. doi: 10.3390/catal10030331. DOI
Lu Q. Gao F. CrystEngComm. 2016;18:7399–7409. doi: 10.1039/C6CE01036A. DOI
Li B. Zheng M. Xue H. Pang H. Inorg. Chem. Front. 2016;3:175–202. doi: 10.1039/C5QI00187K. DOI
Sberveglieri G. Sens. Actuators, B. 1995;23:103–109. doi: 10.1016/0925-4005(94)01278-P. DOI
Li Z. Mi B. Ma X. Liu P. Ma F. Zhang K. Chen X. Li W. Chem. Eng. J. 2023;477:147029. doi: 10.1016/j.cej.2023.147029. DOI
Elanjeitsenni V. P. Vadivu K. S. Prasanth B. M. Mater. Res. Express. 2022;9:022001. doi: 10.1088/2053-1591/ac4aa1. DOI
Roberts M. E. Sokolov A. N. Bao Z. J. Mater. Chem. 2009;19:3351. doi: 10.1039/B816386C. DOI
Mehla S. Das J. Jampaiah D. Periasamy S. Nafady A. Bhargava S. K. Catal. Sci. Technol. 2019;9:3582–3602. doi: 10.1039/C9CY00518H. DOI
Kakkar A. K. Chem. Rev. 2002;102:3579–3588. doi: 10.1021/cr010360k. PubMed DOI
Huynh M. Ozel T. Liu C. Lau E. C. Nocera D. G. Chem. Sci. 2017;8:4779–4794. doi: 10.1039/C7SC01239J. PubMed DOI PMC
Jayakrishnan A. R. Kumar A. Druvakumar S. John R. Sudeesh M. Puli V. S. Silva J. P. B. Gomes M. J. M. Sekhar K. C. J. Mater. Chem. C. 2023;11:827–858. doi: 10.1039/D2TC04424B. DOI
Dalavi D. S. Desai R. S. Patil P. S. J. Mater. Chem. A. 2022;10:1179–1226. doi: 10.1039/D1TA07237D. DOI
Shivasharma T. K. Upadhyay N. Deshmukh T. B. Sankapal B. R. ACS Omega. 2023;8:37685–37719. doi: 10.1021/acsomega.3c05285. PubMed DOI PMC
Pérez Mendoza A. E. Schmidt A. Zarbin A. J. G. Winnischofer H. ACS Appl. Nano Mater. 2024;7:23295–23320. doi: 10.1021/acsanm.4c03493. DOI
Chen J. Zhou Y. Fu Y. Pan J. Mohammed O. F. Bakr O. M. Chem. Rev. 2021;121:12112–12180. doi: 10.1021/acs.chemrev.1c00181. PubMed DOI
Zhan Z. An J. Wei Y. Tran V. T. Du H. Nanoscale. 2017;9:965–993. doi: 10.1039/C6NR08220C. PubMed DOI
Khasbaatar A. Xu Z. Lee J.-H. Campillo-Alvarado G. Hwang C. Onusaitis B. N. Diao Y. Chem. Rev. 2023;123:8395–8487. doi: 10.1021/acs.chemrev.2c00905. PubMed DOI
Song G. Wang Y. Tan D. Q. IET Nanodielectrics. 2022;5:1–23. doi: 10.1049/nde2.12026. DOI
Bruzzone A. A. G. Costa H. L. Lonardo P. M. Lucca D. A. CIRP Ann. 2008;57:750–769. doi: 10.1016/j.cirp.2008.09.003. DOI
Liptay G. Papp-Molnár E. Burger K. J. Inorg. Nucl. Chem. 1969;31:247–252. doi: 10.1016/0022-1902(69)80077-1. DOI
Lumme P. Korvola M.-L. Thermochim. Acta. 1975;13:419–439. doi: 10.1016/0040-6031(75)85083-0. DOI
Li B.-W. Zeng M.-H. Ng S. W. Acta Crystallogr., Sect. E:Struct. Rep. Online. 2009;65:m318. doi: 10.1107/S1600536809005996. PubMed DOI PMC
Byrne P. J. Richardson P. J. Chang J. Kusmartseva A. F. Allan D. R. Jones A. C. Kamenev K. V. Tasker P. A. Parsons S. Chem.–Eur. J. 2012;18:7738–7748. doi: 10.1002/chem.201200213. PubMed DOI
Srivastava R. C. Lingafelter E. C. Jain P. C. Acta Crystallogr. 1967;22:922–923. doi: 10.1107/S0365110X6700180X. DOI
Merritt L. L. Guare C. Lessor A. E. Acta Crystallogr. 1956;9:253–256. doi: 10.1107/S0365110X5600070X. DOI
Benisvy L. Kannappan R. Song Y. Milikisyants S. Huber M. Mutikainen I. Turpeinen U. Gamez P. Bernasconi L. Baerends E. J. Hartl F. Reedijk J. Eur. J. Inorg. Chem. 2007;2007:637–642. doi: 10.1002/ejic.200601015. DOI
Advanced Inorganic Chemistry, Eds. F. A. Cotton and F. A. Cotton, Wiley, New York, 6th edn, 1999
Aggarwal R. C. Bala R. Prasad R. L. Spectrochim. Acta, Part A. 1986;42:725–728. doi: 10.1016/0584-8539(86)80091-5. DOI
Lomjanský D. Rajnák C. Titiš J. Moncoľ J. Smolko L. Boča R. Inorg. Chim. Acta. 2018;483:352–358. doi: 10.1016/j.ica.2018.08.029. DOI
B. V. Crist, https://xpsdatabase.net/nickel-ni-z28-chemicals/
NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 2000, 20899
Gengenbach T. R. Major G. H. Linford M. R. Easton C. D. J. Vac. Sci. Technol., A. 2021;39:013204. doi: 10.1116/6.0000682. DOI
Fujiwara M. Matsushita T. Ikeda S. Anal. Sci. 1993;9:293–295. doi: 10.2116/analsci.9.293. DOI
Shigemi A. Fujiwara M. Kawai J. Matsushita T. Mukoyama T. Ikeda S. J. Surf. Anal. 2000;7:300–313.
Wang C.-L. Yang H. Du J. Zhan S.-Z. Inorg. Chem. Commun. 2021;131:108780. doi: 10.1016/j.inoche.2021.108780. DOI
Sarkar B. Kwek W. Verma D. Kim J. Appl. Catal., A. 2017;545:148–158. doi: 10.1016/j.apcata.2017.07.033. DOI
Biesinger M. C. Payne B. P. Grosvenor A. P. Lau L. W. M. Gerson A. R. Smart R. St. C. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI
Li X. Li J. Kang F. Ionics. 2019;25:1045–1055. doi: 10.1007/s11581-018-2819-5. DOI
Artyushkova K. J. Vac. Sci. Technol., A. 2020;38:031002. doi: 10.1116/1.5135923. DOI
Palatinus L. Acta Crystallogr., Sect. B:Struct. Sci., Cryst. Eng. Mater. 2013;69:1–16. doi: 10.1107/S2052519212051366. DOI
Hewitt I. J. Lan Y. Anson C. E. Luzon J. Sessoli R. Powell A. K. Chem. Commun. 2009:6765–6767. doi: 10.1039/B908194A. PubMed DOI
Kühne I. A. Kostakis G. E. Anson C. E. Powell A. K. Chem. Commun. 2015;51:2702–2705. doi: 10.1039/C4CC09469G. PubMed DOI
Palatinus L. Brázda P. Jelínek M. Hrdá J. Steciuk G. Klementová M. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2019;75:512–522. doi: 10.1107/S2052520619007534. PubMed DOI
Petříček V. Palatinus L. Plášil J. Dušek M. Z. Kristallogr.–Cryst. Mater. 2023;238:271–282. doi: 10.1515/zkri-2023-0005. DOI