The physiological and molecular responses of potato tuberization to projected future elevated temperatures

. 2024 Dec 24 ; 197 (1) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39688842

Grantová podpora
Ministry of Education
Youth and Sports of the Czech Republic from European Regional Development Fund-Project "TowArds Next GENeration Crops
MZE-RO0123 Ministry of Agriculture of the Czech Republic

Potato (Solanum tuberosum L.) is one of the most important food crops globally and is especially vulnerable to heat stress. However, substantial knowledge gaps remain in our understanding of the developmental mechanisms associated with tuber responses to heat stress. This study used whole-plant physiology, transcriptomics, and phytohormone profiling to elucidate how heat stress affects potato tuber development. When plants were grown in projected future elevated temperature conditions, abscisic acid (ABA) levels decreased in leaf and tuber tissues, whereas rates of leaf carbon assimilation and stomatal conductance were not significantly affected compared to those plants grown in historical temperature conditions. While plants grown in projected future elevated temperature conditions initiated more tubers per plant on average, there was a 66% decrease in mature tubers at the final harvest compared to those plants grown in historical temperature conditions. We hypothesize that reduced tuber yields at elevated temperatures are not due to reduced tuber initiation, but due to impaired tuber filling. Transcriptomic analysis detected significant changes in the expression of genes related to ABA response, heat stress, and starch biosynthesis. The tuberization repressor genes SELF-PRUNING 5G (StSP5G) and CONSTANS-LIKE1 (StCOL1) were differentially expressed in tubers grown in elevated temperatures. Two additional known tuberization genes, IDENTITY OF TUBER 1 (StIT1) and TIMING OF CAB EXPRESSION 1 (StTOC1), displayed distinct expression patterns under elevated temperatures compared to historical temperature conditions but were not differentially expressed. This work highlights potential gene targets and key developmental stages associated with tuberization to develop potatoes with greater heat tolerance.

Zobrazit více v PubMed

Abelenda  JA, Cruz-Oró  E, Franco-Zorrilla  JM, Prat  S. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Curr Biol. 2016:26(7):872–881. 10.1016/j.cub.2016.01.066 PubMed DOI

Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. Basic local alignment search tool.  J Mol Biol.  1990:215(3):403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Buchfink  B, Xie  C, Huson  D. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015:12(1):59–60. 10.1038/nmeth.3176 PubMed DOI

Chen  P, Yang  R, Bartels  D, Dong  T, Duan  H. Roles of abscisic acid and gibberellins in stem/root tuber development. Inte J Mol Sci. 2022:23(9):4955. 10.3390/ijms23094955 PubMed DOI PMC

Chen  S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2023:2(2):e107. 10.1002/imt2.107 PubMed DOI PMC

Chen  S, Zhou  Y, Chen  Y, Gu  J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018:34(17):i884–i890. 10.1093/bioinformatics/bty560 PubMed DOI PMC

Dahal  K, Li  X-Q, Tai  H, Creelman  A, Bizimungu  B. Improving potato stress tolerance and tuber yield under a climate change scenario - a current overview. Front Plant Sci. 2019:10:563. 10.3389/fpls.2019.00563 PubMed DOI PMC

de Haan  S., Rodriguez  F.  Chapter 1—potato origin and production. In: Singh  J., Kaur  L., editors. Advances in potato chemistry and technology. 2nd ed. Cambridge, MA, USA: Academic Press; 2016. p. 1–32.

Dutt  S, Manjul  AS, Raigond  P, Singh  B, Siddappa  S, Bhardwaj  V, Kawar  PG, Patil  VU, Kardile  HB. Key players associated with tuberization in potato: potential candidates for genetic engineering. Crit Rev Biotechnol. 2017:37(7):942–957. 10.1080/07388551.2016.1274876 PubMed DOI

Emms  DM, Kelly  S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019:20(1):238. 10.1186/s13059-019-1832-y PubMed DOI PMC

Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database . https://www.fao.org/faostat/en/#home

Galmés  J, Ochogavía  JM, Gago  J, Roldán  EJ, Cifre  J, Conesa  MÀ. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ. 2013:36(5):920–935. 10.1111/pce.12022 PubMed DOI

Hancock  RD, Morris  WL, Ducreux  LJM, Morris  JA, Usman  M, Verrall  SR, Fuller  J, Simpson  CG, Zhang  R, Hedley  PE, et al.  Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 2014:37(2):439–450. 10.1111/pce.12168 PubMed DOI

Hijmans  RJ. The effect of climate change on global potato production. Am. J. Pot Res. 2003:80(4):271–279. 10.1007/BF02855363 DOI

Hoopes  G, Meng  X, Hamilton  JP, Achakkagari  SR, de Alves Freitas Guesdes  F, Bolger  ME, Coombs  JJ, Esselink  D, Kaiser  NR, Kodde  L, et al.  Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol Plant. 2022:15(3):520–536. 10.1016/j.molp.2022.01.003 PubMed DOI

Hoopes  GM, Zarka  D, Feke  A, Acheson  K, Hamilton  JP, Douches  D, Buell  CR, Farré  EM. Keeping time in the dark: potato diel and circadian rhythmic gene expression reveals tissue-specific circadian clocks. Plant Direct. 2022:6(7):e425. 10.1002/pld3.425 PubMed DOI PMC

IPCC . Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte  V, Zhai  P, Pirani  A, Connors  SL, Péan  C, Berger  S, Caud  N, editors.  Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2021. p. 3–32. In press.

Jing  S, Sun  X, Yu  L, Wang  E, Cheng  Z, Liu  H, Jiang  P, Qin  J, Begum  S, Song  B. Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato. Plant Physiol. 2022:189(3):1677–1693. 10.1093/plphys/kiac098 PubMed DOI PMC

Kim  D, Paggi  JM, Park  C, Bennett  C, Salzberg  SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019:37(8):907–915. 10.1038/s41587-019-0201-4 PubMed DOI PMC

Kim  YU, Lee  BW. Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth. Front Plant Sci. 2019:10:300. 10.3389/fpls.2019.00300 PubMed DOI PMC

Kondhare  KR, Kumar  A, Patil  NS, Malankar  NN, Saha  K, Banerjee  AK. Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism. Plant Physiol. 2021:187(3):1071–1086. 10.1093/plphys/kiab409 PubMed DOI PMC

Lehretz  GG, Sonnewald  S, Hornyik  C, Corral  JM, Sonnewald  U. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr Biol. 2019:29(10):1614–1624.e3. 10.1016/j.cub.2019.04.027 PubMed DOI

Leisner  CP, Wood  JC, Vaillancourt  B, Tang  Y, Douches  DS, Buell  R, Winkler  C, A  J. Impact of choice of future climate change projection on growth chamber experimental outcomes: a preliminary study in potato. Int J Biometeorol. 2017:62(4):669–679. 10.1007/s00484-017-1475-1 PubMed DOI

Li  N, Euring  D, Cha  JY, Lin  Z, Lu  M, Huang  L-J, Kim  WY. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front Plant Sci. 2020:11:627969. 10.3389/fpls.2020.627969 PubMed DOI PMC

Liao  Y, Smyth  GK, Shi  W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014:30(7):923–930. 10.1093/bioinformatics/btt656 PubMed DOI

Liu  N, Zhao  R, Qiao  L, Zhang  Y, Li  M, Sun  H, Xing  Z, Wang  X. Growth stages classification of potato crop based on analysis of spectral response and variables optimization. Sensors (Basel). 2020:20(14)(14):3995. 10.3390/s20143995 PubMed DOI PMC

Love  MI, Huber  W, Anders  S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014:15(12):550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Mearns  LO, Arritt  R, Biner  S, Bukovsky  MS, McGinnis  S, Sain  S, Caya  D, Correia  J  Jr, Flory  D, Gutowski  W, et al.  The North American regional climate change program: overview of phase I results. Bull Am Meteorol Soc. 2012:93(9):1337–1362. 10.1175/BAMS-D-11-00223.1 DOI

Morris  WL, Ducreux  LJM, Morris  J, Campbell  R, Usman  M, Hedley  PE, Prat  S, Taylor  MA. Identification of TIMING OF CAB EXPRESSION 1 as a temperature-sensitive negative regulator of tuberization in potato. J Exp Bot. 2019:70(20):5703–5714. 10.1093/jxb/erz336 PubMed DOI PMC

Navarro  C, Abelenda  JA, Cruz-Oró  E, Cuéllar  CA, Tamaki  S, Silva  J, Shimamoto  K, Prat  S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature. 2011:478(7367):119–122. 10.1038/nature10431 PubMed DOI

Obidiegwu  JE, Bryan  GJ, Jones  HG, Prashar  A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci. 2015:6:542. 10.3389/fpls.2015.00542 PubMed DOI PMC

Ortiz  R. The state of the use of potato genetic diversity. In: Broadening the genetic base of crop production. Wallingford, UK: CABI Publishing; 2001. p. 181–200.

Park  J-S, Park  S-J, Kwon  S-Y, Shin  A-Y, Moon  K-B, Park  JM, Cho  HS, Park  SU, Jeon  J-H, Kim  H-S, et al.  Temporally distinct regulatory pathways coordinate thermo-responsive storage organ formation in potato. Cell Rep. 2022:38(13):110579. 10.1016/j.celrep.2022.110579 PubMed DOI

Patro  R, Duggal  G, Love  MI, Irizarry  RA, Kingsford  C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017:14(4):417–419. 10.1038/nmeth.4197 PubMed DOI PMC

Pham  GM, Hamilton  JP, Wood  JC, Burke  JT, Zhao  H, Vaillancourt  B, Ou  S, Jiang  J, Buell  CR. Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience. 2020:9(9):giaa100. 10.1093/gigascience/giaa100 PubMed DOI PMC

Prerostova  Sylva, Černy  Martin, Dovrev  Petre I., et al.  Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis. Frontiers in Plant Science. 2021:11:608711. 10.3389/fpls.2020.608711 PubMed DOI PMC

R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022. https://www.R-project.org.

Rykaczewska  K. The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am J Plant Sci. 2013:04(12):2386–2393. 10.4236/ajps.2013.412295 DOI

Rykaczewska  K. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res. 2015:92(3):339–349. 10.1007/s12230-015-9436-x DOI

Sharma  P, Lin  T, Hannapel  DJ. Targets of the StBEL5 transcription factor include the FT ortholog StSP6A. Plant Physiol. 2016:170(1):310–324. 10.1104/pp.15.01314 PubMed DOI PMC

Singh  A, Siddappa  S, Bhardwaj  V, Singh  B, Kumar  D, Singh  BP. Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiol Biochem. 2015:97:108–116. 10.1016/j.plaphy.2015.09.014 PubMed DOI

Tang  D, Jia  Y, Zhang  J, Li  H, Cheng  L, Wang  P, Bao  Z, Liu  Z, Feng  S, Zhu  X, et al.  Genome evolution and diversity of wild and cultivated potatoes. Nature. 2022:606(7914):535–541. 10.1038/s41586-022-04822-x PubMed DOI PMC

Tang  R, Niu  S, Zhang  G, Chen  G, Haroon  M, Yang  Q, Rajora  OP, Li  X-Q. Physiological and growth responses of potato cultivars to heat stress. Botany. 2018:96(12)(12):897–912. 10.1139/cjb-2018-0125 DOI

Teo  CJ, Takahashi  K, Shimizu  K, Shimamoto  K, Taoka  K-I. Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant Cell Physiol. 2017:58(2):365–374. 10.1093/pcp/pcw197 PubMed DOI

Timlin  D, Lutfor Rahman  SM, Baker  J, Reddy  VR, Fleisher  D, Quebedeaux  B. Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agron J. 2006:98(5):1195–1203. 10.2134/agronj2005.0260 DOI

Turck  F, Fornara  F, Coupland  G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol. 2008:59(1):573–594. 10.1146/annurev.arplant.59.032607.092755 PubMed DOI

Valverde  F. CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot. 2011:62(8):2453–2463. 10.1093/jxb/erq449 PubMed DOI

Van Dam  J, Kooman  PL, Struik  PC. Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Res. 1996:39(1):51–62. 10.1007/BF02358206 DOI

Wang  Z, Ma  R, Zhao  M, Wang  F, Zhang  N, Si  H. NO and ABA interaction regulates tuber dormancy and sprouting in potato. Front Plant Sci. 2020:11:311. 10.3389/fpls.2020.00311 PubMed DOI PMC

Weirsema  SG. Physiological development of potato seed tubers. In: International Potato Center (CIP). Lima, Peru: Technical Information Bulletin; 1985. p. 5434.

Xu  X, van Lammeren  AAM, Vermeer  E, Vreugdenhil  D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro1. Plant Physiol. 1998:117(2):575–584. 10.1104/pp.117.2.575 PubMed DOI PMC

Zhang  G, Jin  X, Li  X, Zhang  N, Li  S, Si  H, Rajora  OP, Li  X-Q. Genome-wide identification of PEBP gene family members in potato and their phylogenetic relationships and expression patterns under heat stress. Mol Biol Rep. 2022;49(6):4683–4697. 10.1007/s11033-022-07318-z PubMed DOI

Zhang  G, Tang  R, Niu  S, Si  H, Yang  Q, Rajora  OP, Li  X-Q. Heat-stress-induced sprouting and differential gene expression in growing potato tubers: comparative transcriptomics with that induced by postharvest sprouting. Hortic Res. 2021:8(1):226. 10.1038/s41438-021-00680-2 PubMed DOI PMC

Zierer  W, Rüscher  D, Sonnewald  U, Sonnewald  S. Tuber and tuberous root development. Annu Rev Plant Biol. 2021:72(1):551–580. 10.1146/annurev-arplant-080720-084456 PubMed DOI

Zwack  PJ, De Clercq  I, Howton  TC, Hallmark  HT, Hurny  A, Keshishian  EA, Parish  AM, Benkova  E, Mukhtar  MS, Van Breusegem  F, et al.  Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress. Plant Physiol. 2016:172(2):1249–1258. 10.1104/pp.16.00415 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace