The physiological and molecular responses of potato tuberization to projected future elevated temperatures
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
Ministry of Education
Youth and Sports of the Czech Republic from European Regional Development Fund-Project "TowArds Next GENeration Crops
MZE-RO0123
Ministry of Agriculture of the Czech Republic
PubMed
39688842
PubMed Central
PMC11683837
DOI
10.1093/plphys/kiae664
PII: 7926832
Knihovny.cz E-zdroje
- MeSH
- hlízy rostlin * genetika růst a vývoj fyziologie MeSH
- kyselina abscisová * metabolismus MeSH
- listy rostlin genetika fyziologie MeSH
- reakce na tepelný šok genetika MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- škrob metabolismus MeSH
- Solanum tuberosum * genetika fyziologie růst a vývoj metabolismus MeSH
- stanovení celkové genové exprese MeSH
- teplota MeSH
- transkriptom genetika MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina abscisová * MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
- škrob MeSH
Potato (Solanum tuberosum L.) is one of the most important food crops globally and is especially vulnerable to heat stress. However, substantial knowledge gaps remain in our understanding of the developmental mechanisms associated with tuber responses to heat stress. This study used whole-plant physiology, transcriptomics, and phytohormone profiling to elucidate how heat stress affects potato tuber development. When plants were grown in projected future elevated temperature conditions, abscisic acid (ABA) levels decreased in leaf and tuber tissues, whereas rates of leaf carbon assimilation and stomatal conductance were not significantly affected compared to those plants grown in historical temperature conditions. While plants grown in projected future elevated temperature conditions initiated more tubers per plant on average, there was a 66% decrease in mature tubers at the final harvest compared to those plants grown in historical temperature conditions. We hypothesize that reduced tuber yields at elevated temperatures are not due to reduced tuber initiation, but due to impaired tuber filling. Transcriptomic analysis detected significant changes in the expression of genes related to ABA response, heat stress, and starch biosynthesis. The tuberization repressor genes SELF-PRUNING 5G (StSP5G) and CONSTANS-LIKE1 (StCOL1) were differentially expressed in tubers grown in elevated temperatures. Two additional known tuberization genes, IDENTITY OF TUBER 1 (StIT1) and TIMING OF CAB EXPRESSION 1 (StTOC1), displayed distinct expression patterns under elevated temperatures compared to historical temperature conditions but were not differentially expressed. This work highlights potential gene targets and key developmental stages associated with tuberization to develop potatoes with greater heat tolerance.
Zobrazit více v PubMed
Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, Prat S. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor. Curr Biol. 2016:26(7):872–881. 10.1016/j.cub.2016.01.066 PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990:215(3):403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Buchfink B, Xie C, Huson D. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015:12(1):59–60. 10.1038/nmeth.3176 PubMed DOI
Chen P, Yang R, Bartels D, Dong T, Duan H. Roles of abscisic acid and gibberellins in stem/root tuber development. Inte J Mol Sci. 2022:23(9):4955. 10.3390/ijms23094955 PubMed DOI PMC
Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2023:2(2):e107. 10.1002/imt2.107 PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018:34(17):i884–i890. 10.1093/bioinformatics/bty560 PubMed DOI PMC
Dahal K, Li X-Q, Tai H, Creelman A, Bizimungu B. Improving potato stress tolerance and tuber yield under a climate change scenario - a current overview. Front Plant Sci. 2019:10:563. 10.3389/fpls.2019.00563 PubMed DOI PMC
de Haan S., Rodriguez F. Chapter 1—potato origin and production. In: Singh J., Kaur L., editors. Advances in potato chemistry and technology. 2nd ed. Cambridge, MA, USA: Academic Press; 2016. p. 1–32.
Dutt S, Manjul AS, Raigond P, Singh B, Siddappa S, Bhardwaj V, Kawar PG, Patil VU, Kardile HB. Key players associated with tuberization in potato: potential candidates for genetic engineering. Crit Rev Biotechnol. 2017:37(7):942–957. 10.1080/07388551.2016.1274876 PubMed DOI
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019:20(1):238. 10.1186/s13059-019-1832-y PubMed DOI PMC
Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database . https://www.fao.org/faostat/en/#home
Galmés J, Ochogavía JM, Gago J, Roldán EJ, Cifre J, Conesa MÀ. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ. 2013:36(5):920–935. 10.1111/pce.12022 PubMed DOI
Hancock RD, Morris WL, Ducreux LJM, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE, et al. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 2014:37(2):439–450. 10.1111/pce.12168 PubMed DOI
Hijmans RJ. The effect of climate change on global potato production. Am. J. Pot Res. 2003:80(4):271–279. 10.1007/BF02855363 DOI
Hoopes G, Meng X, Hamilton JP, Achakkagari SR, de Alves Freitas Guesdes F, Bolger ME, Coombs JJ, Esselink D, Kaiser NR, Kodde L, et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol Plant. 2022:15(3):520–536. 10.1016/j.molp.2022.01.003 PubMed DOI
Hoopes GM, Zarka D, Feke A, Acheson K, Hamilton JP, Douches D, Buell CR, Farré EM. Keeping time in the dark: potato diel and circadian rhythmic gene expression reveals tissue-specific circadian clocks. Plant Direct. 2022:6(7):e425. 10.1002/pld3.425 PubMed DOI PMC
IPCC . Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, editors. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2021. p. 3–32. In press.
Jing S, Sun X, Yu L, Wang E, Cheng Z, Liu H, Jiang P, Qin J, Begum S, Song B. Transcription factor StABI5-like 1 binding to the FLOWERING LOCUS T homologs promotes early maturity in potato. Plant Physiol. 2022:189(3):1677–1693. 10.1093/plphys/kiac098 PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019:37(8):907–915. 10.1038/s41587-019-0201-4 PubMed DOI PMC
Kim YU, Lee BW. Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking: photosynthesis and tuber growth. Front Plant Sci. 2019:10:300. 10.3389/fpls.2019.00300 PubMed DOI PMC
Kondhare KR, Kumar A, Patil NS, Malankar NN, Saha K, Banerjee AK. Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism. Plant Physiol. 2021:187(3):1071–1086. 10.1093/plphys/kiab409 PubMed DOI PMC
Lehretz GG, Sonnewald S, Hornyik C, Corral JM, Sonnewald U. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr Biol. 2019:29(10):1614–1624.e3. 10.1016/j.cub.2019.04.027 PubMed DOI
Leisner CP, Wood JC, Vaillancourt B, Tang Y, Douches DS, Buell R, Winkler C, A J. Impact of choice of future climate change projection on growth chamber experimental outcomes: a preliminary study in potato. Int J Biometeorol. 2017:62(4):669–679. 10.1007/s00484-017-1475-1 PubMed DOI
Li N, Euring D, Cha JY, Lin Z, Lu M, Huang L-J, Kim WY. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front Plant Sci. 2020:11:627969. 10.3389/fpls.2020.627969 PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014:30(7):923–930. 10.1093/bioinformatics/btt656 PubMed DOI
Liu N, Zhao R, Qiao L, Zhang Y, Li M, Sun H, Xing Z, Wang X. Growth stages classification of potato crop based on analysis of spectral response and variables optimization. Sensors (Basel). 2020:20(14)(14):3995. 10.3390/s20143995 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014:15(12):550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D, Correia J Jr, Flory D, Gutowski W, et al. The North American regional climate change program: overview of phase I results. Bull Am Meteorol Soc. 2012:93(9):1337–1362. 10.1175/BAMS-D-11-00223.1 DOI
Morris WL, Ducreux LJM, Morris J, Campbell R, Usman M, Hedley PE, Prat S, Taylor MA. Identification of TIMING OF CAB EXPRESSION 1 as a temperature-sensitive negative regulator of tuberization in potato. J Exp Bot. 2019:70(20):5703–5714. 10.1093/jxb/erz336 PubMed DOI PMC
Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature. 2011:478(7367):119–122. 10.1038/nature10431 PubMed DOI
Obidiegwu JE, Bryan GJ, Jones HG, Prashar A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci. 2015:6:542. 10.3389/fpls.2015.00542 PubMed DOI PMC
Ortiz R. The state of the use of potato genetic diversity. In: Broadening the genetic base of crop production. Wallingford, UK: CABI Publishing; 2001. p. 181–200.
Park J-S, Park S-J, Kwon S-Y, Shin A-Y, Moon K-B, Park JM, Cho HS, Park SU, Jeon J-H, Kim H-S, et al. Temporally distinct regulatory pathways coordinate thermo-responsive storage organ formation in potato. Cell Rep. 2022:38(13):110579. 10.1016/j.celrep.2022.110579 PubMed DOI
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017:14(4):417–419. 10.1038/nmeth.4197 PubMed DOI PMC
Pham GM, Hamilton JP, Wood JC, Burke JT, Zhao H, Vaillancourt B, Ou S, Jiang J, Buell CR. Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience. 2020:9(9):giaa100. 10.1093/gigascience/giaa100 PubMed DOI PMC
Prerostova Sylva, Černy Martin, Dovrev Petre I., et al. Light Regulates the Cytokinin-Dependent Cold Stress Responses in Arabidopsis. Frontiers in Plant Science. 2021:11:608711. 10.3389/fpls.2020.608711 PubMed DOI PMC
R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022. https://www.R-project.org.
Rykaczewska K. The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am J Plant Sci. 2013:04(12):2386–2393. 10.4236/ajps.2013.412295 DOI
Rykaczewska K. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res. 2015:92(3):339–349. 10.1007/s12230-015-9436-x DOI
Sharma P, Lin T, Hannapel DJ. Targets of the StBEL5 transcription factor include the FT ortholog StSP6A. Plant Physiol. 2016:170(1):310–324. 10.1104/pp.15.01314 PubMed DOI PMC
Singh A, Siddappa S, Bhardwaj V, Singh B, Kumar D, Singh BP. Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiol Biochem. 2015:97:108–116. 10.1016/j.plaphy.2015.09.014 PubMed DOI
Tang D, Jia Y, Zhang J, Li H, Cheng L, Wang P, Bao Z, Liu Z, Feng S, Zhu X, et al. Genome evolution and diversity of wild and cultivated potatoes. Nature. 2022:606(7914):535–541. 10.1038/s41586-022-04822-x PubMed DOI PMC
Tang R, Niu S, Zhang G, Chen G, Haroon M, Yang Q, Rajora OP, Li X-Q. Physiological and growth responses of potato cultivars to heat stress. Botany. 2018:96(12)(12):897–912. 10.1139/cjb-2018-0125 DOI
Teo CJ, Takahashi K, Shimizu K, Shimamoto K, Taoka K-I. Potato tuber induction is regulated by interactions between components of a tuberigen complex. Plant Cell Physiol. 2017:58(2):365–374. 10.1093/pcp/pcw197 PubMed DOI
Timlin D, Lutfor Rahman SM, Baker J, Reddy VR, Fleisher D, Quebedeaux B. Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agron J. 2006:98(5):1195–1203. 10.2134/agronj2005.0260 DOI
Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol. 2008:59(1):573–594. 10.1146/annurev.arplant.59.032607.092755 PubMed DOI
Valverde F. CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot. 2011:62(8):2453–2463. 10.1093/jxb/erq449 PubMed DOI
Van Dam J, Kooman PL, Struik PC. Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Res. 1996:39(1):51–62. 10.1007/BF02358206 DOI
Wang Z, Ma R, Zhao M, Wang F, Zhang N, Si H. NO and ABA interaction regulates tuber dormancy and sprouting in potato. Front Plant Sci. 2020:11:311. 10.3389/fpls.2020.00311 PubMed DOI PMC
Weirsema SG. Physiological development of potato seed tubers. In: International Potato Center (CIP). Lima, Peru: Technical Information Bulletin; 1985. p. 5434.
Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro1. Plant Physiol. 1998:117(2):575–584. 10.1104/pp.117.2.575 PubMed DOI PMC
Zhang G, Jin X, Li X, Zhang N, Li S, Si H, Rajora OP, Li X-Q. Genome-wide identification of PEBP gene family members in potato and their phylogenetic relationships and expression patterns under heat stress. Mol Biol Rep. 2022;49(6):4683–4697. 10.1007/s11033-022-07318-z PubMed DOI
Zhang G, Tang R, Niu S, Si H, Yang Q, Rajora OP, Li X-Q. Heat-stress-induced sprouting and differential gene expression in growing potato tubers: comparative transcriptomics with that induced by postharvest sprouting. Hortic Res. 2021:8(1):226. 10.1038/s41438-021-00680-2 PubMed DOI PMC
Zierer W, Rüscher D, Sonnewald U, Sonnewald S. Tuber and tuberous root development. Annu Rev Plant Biol. 2021:72(1):551–580. 10.1146/annurev-arplant-080720-084456 PubMed DOI
Zwack PJ, De Clercq I, Howton TC, Hallmark HT, Hurny A, Keshishian EA, Parish AM, Benkova E, Mukhtar MS, Van Breusegem F, et al. Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress. Plant Physiol. 2016:172(2):1249–1258. 10.1104/pp.16.00415 PubMed DOI PMC