Behavioural, Pharmacokinetic, Metabolic, and Hyperthermic Profile of 3,4-Methylenedioxypyrovalerone (MDPV) in the Wistar Rat
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29740356
PubMed Central
PMC5928397
DOI
10.3389/fpsyt.2018.00144
Knihovny.cz E-zdroje
- Klíčová slova
- 3 4-methylenedioxypyrovalerone, MDPV, behaviour, hyperthermia, locomotion, pharmacokinetics, sensory gating, wistar rat,
- Publikační typ
- časopisecké články MeSH
3,4-methylenedioxypyrovalerone (MDPV) is a potent pyrovalerone cathinone that is substituted for amphetamines by recreational users. We report a comprehensive and detailed description of the effects of subcutaneous MDPV (1-4 mg/kg) on pharmacokinetics, biodistribution and metabolism, acute effects on thermoregulation under isolated and aggregated conditions, locomotion (open field) and sensory gating (prepulse inhibition, PPI). All studies used male Wistar rats. Pharmacokinetics after single dose of 2 mg/kg MDPV was measured over 6 h in serum, brain and lungs. The biotransformation study recorded 24 h urinary levels of MDPV and its metabolites after 4 mg/kg. The effect of 2 mg/kg and 4 mg/kg on body temperature (°C) was measured over 12 h in group- vs. individually-housed rats. In the open field, locomotion (cm) and its spatial distribution were assessed. In PPI, acoustic startle response (ASR), habituation, and PPI were measured (AVG amplitudes). In behavioural experiments, 1, 2, or 4 mg/kg MDPV was administered 15 or 60 min prior to testing. Thermoregulation and behavioural data were analysed using factorial analysis of variance (ANOVA). Peak concentrations of MDPV in sera, lung and brain tissue were reached in under 30 min. While negligible levels of metabolites were detected in tissues, the major metabolites in urine were demethylenyl-MDPV and demethylenyl-methyl-MDPV at levels three-four times higher than the parent drug. We also established a MDPV brain/serum ratio ~2 lasting for ~120 min, consistent with our behavioural observations of locomotor activation and disrupted spatial distribution of behaviour as well as moderate increases in body temperature (exacerbated in group-housed animals). Finally, 4 mg/kg induced stereotypy in the open field and transiently disrupted PPI. Our findings, along with previous research suggest that MDPV is rapidly absorbed, readily crosses the blood-brain barrier and is excreted primarily as metabolites. MDPV acts as a typical stimulant with modest hyperthermic and psychomimetic properties, consistent with a primarily dopaminergic mechanism of action. Since no specific signs of acute toxicity were observed, even at the highest doses used, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.
Department of Analytical Chemistry University of Chemistry and Technology Prague Czechia
Department of Experimental Neurobiology National Institute of Mental Health Klecany Czechia
Department of Organic Chemistry University of Chemistry and Technology Prague Czechia
Zobrazit více v PubMed
Shanks KG, Dahn T, Behonick G, Terrell A. Analysis of first and second generation legal highs for synthetic cannabinoids and synthetic stimulants by ultra-performance liquid chromatography and time of flight mass spectrometry. J Anal Toxicol. (2012) 36:360–71. 10.1093/jat/bks047 PubMed DOI
European Monitoring Centre for Drugs and Drug Addiction EMCDDA -European Monitoring Centre for Drugs and Drug Addiction and Europol European Drug Report. Trends and Developments, Luxembourg (2017).
United Nations Office of Drugs and Crime (UNDOC) World Drug Report. (2015). Available online at: http://www.unodc.org/documents/wdr2015/World_Drug_Report_2015.pdf
Baumann MH, Bukhari MO, Lehner KR, Anizan S, Rice KC, Concheiro M, et al. . Neuropharmacology of 3,4-Methylenedioxypyrovalerone (MDPV), its metabolites, and related analogs. Curr Topics Behav Neurosci. (2017) 32:93–117. 10.1007/7854_2016_53 PubMed DOI PMC
Parker H, Williams L, Aldridge J. The normalization of ‘Sensible’ recreational drug use: further evidence from the North West England longitudinal study. Sociology (2002) 36:941–64. 10.1177/003803850203600408 DOI
Murphy CM, Dulaney AR, Beuhler MC, Kacinko S. “Bath salts” and “plant food” products: the experience of one regional US poison center. J Med Toxicol. (2013) 9:42–8. 10.1007/s13181-012-0243-1 PubMed DOI PMC
Spiller HA, Ryan ML, Weston RG, Jansen J. Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in United States. Clin Toxicol (Phila). (2011) 49:499–505. 10.3109/15563650.2011.590812 PubMed DOI
Baumann MH. Awash in a sea of ‘bath salts’: implications for biomedical research and public health. Addiction (2014) 109:1577–9. 10.1111/add.12601 PubMed DOI PMC
Harvey EL, Baker LE. Differential effects of 3, 4-methylenedioxypyrovalerone (MDPV) and 4-methylmethcathinone (mephedrone) in rats trained to discriminate MDMA or a d-amphetamine+MDMA mixture. Psychopharmacology (2016) 233:673–80. 10.1007/s00213-015-4142-4 PubMed DOI PMC
Winder GS, Stern N, Hosanagar A. Are “bath salts” the next generation of stimulant abuse? J Subst Abuse Treat. (2013) 44:42–5. 10.1016/j.jsat.2012.02.003 PubMed DOI
Green AR, King MV, Shortall SE, Fone KC. The preclinical pharmacology of mephedrone; not just MDMA by another name. Br J Pharmacol. (2014) 171:2251–68. 10.1111/bph.12628 PubMed DOI PMC
Ellefsen KN, Concherio M, Huestis MA. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev. (2016) 48:237–65. 10.1080/03602532.2016.1188937 PubMed DOI
Zaitsu K, Katagi M, Tsuchihashi H, Ishii A. Recently abused synthetic cathinones, α-pyrrolidinophenone derivatives: a review of their pharmacology, acute toxicity, and metabolism. Forensic Toxicol. (2014) 32:1 10.1007/s11419-013-0218-1 DOI
Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, et al. . Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology (2013) 38:552–62. 10.1038/npp.2012.204 PubMed DOI PMC
Cameron KN, Kolanos R, Solis E, Jr., Glennon RA, De Felice LJ. Bath salts components mephedrone and methylenedioxypyrovalerone (MDPV) act synergistically at the human dopamine transporter. Br J Pharmacol. (2013) 168:1750–7. 10.1111/bph.12061 PubMed DOI PMC
Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A. Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol. (2013) 85:1803–15. 10.1016/j.bcp.2013.04.004 PubMed DOI PMC
López-Arnau R, Martínez-Clemente J, Pubill D, Escubedo E, Camarasa J. Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmacol. (2012) 167:407–20. 10.1111/j.1476-5381.2012.01998.x PubMed DOI PMC
Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS, Bauman MH. Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacol. (2014) 87:206–13. 10.1016/j.neuropharm.2014.02.016 PubMed DOI PMC
Meltzer PC, Butler D, Deschamps JR, Madras BK. 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem. (2006) 49:1420–32. 10.1021/jm050797a PubMed DOI PMC
Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al. . Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. (2013) 168:458–70. 10.1111/j.1476-5381.2012.02145.x PubMed DOI PMC
Gannon BM, Galindo KI, Rice KC, Collins GT. Individual differences in the relative reinforcing effects of 3,4-methylenedioxypyrovalerone (MDPV) under fixed and progressive ratio schedules of reinforcement in rats. J Pharmacol Exp Ther. (2017) 361:181–9 10.1124/jpet.116.239376 PubMed DOI PMC
Liechti M. Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signaling. Swiss Med Wkly. (2015) 145:40–3. 10.4414/smw.2015.14043 PubMed DOI
Baumann MH, Ayestas MA, Jr., Partilla JS, Sink JR, Shulgin AT, Daley PF, et al. . The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology (2012) 37:1192–203. 10.1038/npp.2011.304 PubMed DOI PMC
Buenrostro-Jáuregui M, Ciudad-Roberts A, Moreno J, Muñoz-Villegas P, López-Arnau R, Pubill D, et al. . Changes in CREB and deltaFosB are associated with the behavioural sensitization induced by methylenedioxypyrovalerone. J Psychopharmacol. (2016) 30:707–12. 10.1177/0269881116645300 PubMed DOI
Dancesafe (2017),. MDPV. Available online at: https://dancesafe.org/mdpv/
Ross EA, Reisfield GM, Watson MC, Chronister CW, Goldberger BA. Psychoactive “bath salts” intoxication with methylenedioxypyrovalerone. Am J Med. (2012) 125:854–8. 10.1016/j.amjmed.2012.02.019 PubMed DOI
Kelly JP. Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal. (2011) 3:439–53. 10.1002/dta.313 PubMed DOI
Joksovic P, Mellos N, van Wattum PJ, Chiles C. “Bath salts”-induced psychosis and serotonin toxicity. J Clin Psychiatry (2012) 73:1125. 10.4088/JCP.12cr07819 PubMed DOI
Anizan S, Concheiro M, Lehner KR, Bukhari MO, Suzuki M, Rice KC, et al. . Linear pharmacokinetics of 3,4-methylenedioxypyrovalerone (MDPV) and its metabolites in the rat: relationship to pharmacodynamic effects. Addict Biol. (2016) 21:339–47. 10.1111/adb.12201 PubMed DOI PMC
Novellas J, López-Arnau R, Carbó ML, Pubill D, Camarasa J, Escubedo E. Concentrations of MDPV in rat striatum correlate with the psychostimulant effect. J Psychopharmacol. (2015) 29:1209–18. 10.1177/0269881115598415 PubMed DOI
Strano-Rossi S, Cadwallader AB, de la Torre X, Botrè F. Toxicological determination and in vitro metabolism of the designer drug methylenedioxypyrovalerone (MDPV) by gas chromatography/mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. (2010) 24:2706–14. 10.1002/rcm.4692 PubMed DOI
Meyer MR, Du P, Schuster F, Maurer HH. Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectability in urine by GC-MS. J Mass Spectrom. (2010) 45:1426–42. 10.1002/jms.1859 PubMed DOI
Marinetti LJ, Antonides HM. Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: method development, drug distribution and interpretation of results. J Anal Toxicol. (2013) 37:135–46. 10.1093/jat/bks136 PubMed DOI
Froberg BA, Levine M, Beuhler MC, Judge BS, Moore PW, Engebretsen KM, et al. . Acute methylenedioxypyrovalerone toxicity. J Med Toxicol. (2015) 11:185–94. 10.1007/s13181-014-0446-8 PubMed DOI PMC
Karch SB. Cathinone neurotoxicity (The “3Ms”). Curr Neuropharmacol. (2015) 13:21–5. 10.2174/1570159X13666141210225009 PubMed DOI PMC
European Monitoring Centre for Drugs and Drug Addiction EMCDDA–Europol Joint Report on a New Psychoactive Substance: MDPV (3,4-methylenedioxypyrovalerone) (2014). Available online at: http://www.emcdda.europa.eu/system/files/publications/819/TDAS14001ENN_466653.pdf
Kesha K, Boggs CL, Ripple MG, Allan CH, Levine B, Jufer-Phipps R, et al. . Methylenedioxypyrovalerone (“bath salts”), related death: case report and review of the literature. J Forensic Sci. (2013) 58:1654–9. 10.1111/1556-4029.12202 PubMed DOI
Murray BL, Murphy CM, Beuhler MC. Death following recreational use of designer drug “bath salts” containing 3,4-Methylenedioxypyrovalerone (MDPV). J Med Toxicol. (2012) 8:69–75. 10.1007/s13181-011-0196-9 PubMed DOI PMC
Wyman JF, Lavins ES, Engelhart D, Armstrong EJ, Snell KD, Boggs PD, et al. Postmortem tissue distribution of MDPV following lethal intoxication by “bath salts”. J Anal Toxicol. (2013) 37:182–5. 10.1093/jat/bkt001 PubMed DOI
Mugele J, Nanagas KA, Tormoehlen LM. Serotonin syndrome associated with MDPV use: a case report. Ann Emerg Med. (2012) 60:100–2. 10.1016/j.annemergmed.2011.11.033 PubMed DOI
Penders TM, Gestring RE, Vilensky DA. Intoxication delirium following use of synthetic cathinone derivatives. Am J Drug Alc Abuse. (2012) 38:616–7. 10.3109/00952990.2012.694535 PubMed DOI
Prosser J. M., Nelson L. S. The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol. (2012) 8:33–4. 10.1007/s13181-011-0193-z PubMed DOI PMC
Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC. In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology (2012) 38:563–73. 10.1038/npp.2012.233 PubMed DOI PMC
Kiyatkin EA, Ren S. MDMA, Methylone, and MDPV: drug-induced brain hyperthermia and its modulation by activity state and environment. Curr Topics Behav Neurosci. (2016) 32:183–208. 10.1007/7854_2016_35 PubMed DOI PMC
Aarde SM, Huang PK, Creehan KM, Dickerson TJ, Taffe MA. The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: self-administration and locomotor activity in rats. Neuropharmacology (2013) 71:130–40. 10.1016/j.neuropharm.2013.04.003 PubMed DOI PMC
Bonano JS, Glennon RA, De Felice LJ, Banks ML, Negus SS. Abuse-related and abuse-limiting effects of methcathinone and the synthetic “bath salts” cathinone analogs methylenedioxypyrovalerone (MDPV), methylone and mephedrone on intracranial self-stimulation in rats. Psychopharmacology (Berl). (2014) 231:199–207. 10.1007/s00213-013-3223-5 PubMed DOI PMC
Gannon BM, Russell LN, Modi MS, Rice KC, Fantegrossi WE. Effects of orally self-administered bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice. Drug Alc Depend. (2017) 179:408–15. 10.1016/j.drugalcdep.2017.06.031 PubMed DOI PMC
Gannon BM, Williamson A, Rice KC, Fantegrossi WE. Role of monoaminergic systems and ambient temperature in bath salts constituent 3,4-methylenedioxypyrovalerone (MDPV) elicited hyperthermia and locomotor stimulation in mice. Neuropsychopharmacology (2017) 30422–7. 10.1016/j.neuropharm.2017.09.004 PubMed DOI PMC
Karlsson L, Andersson M, Kronstrand R, Kugelberg FC. Mephedrone, Methylone and 3,4-Methylenedioxypyrovalerone (MDPV) induce conditioned place preference in mice. Basic Clin Pharmacol Toxicol. (2014) 115:411–6. 10.1111/bcpt.12253 PubMed DOI
Moreno-Rius J, Pubill D, Escubedo E, Garcia JC, Miquel M. Locomotor activating effects and addiction-like features of MDPV as assessed in preclinical studies: a review. Agora de Salut. (2017) 4.25:239–46. 10.6035/AgoraSalut.2017.4.25 DOI
Watterson LR, Kufahl PR, Nemirovsky NE, Sewalia K, Grabenauer M, Thomas BF, et al. . Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict Biol. (2014) 19:165–74. 10.1111/j.1369-1600.2012.00474.x PubMed DOI PMC
Huang PK, Aarde SM, Angrish D, Houseknecht KL, Dickerson TJ, Taffe MA. Contrasting effects of d-methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxypyrovalerone, and 4-methylmethcathinone on wheel activity in rats. Drug Alc Depend. (2012) 126:168–75. 10.1016/j.drugalcdep.2012.05.011 PubMed DOI PMC
Marusich JA, Grant KR, Blough BE, Wiley JL. Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice. Neurotoxicology (2012) 33:1305–13. 10.1016/j.neuro.2012.08.003 PubMed DOI PMC
Schindler CW, Thorndike EB, Goldberg SR, Lehner KR, Cozzi NV, Brandt SD, et al. . Reinforcing and neurochemical effects of the “bath salts” constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Psychopharmacology (Berl) (2016) 233:1981–90. 10.1007/s00213-015-4057-0 PubMed DOI PMC
Watterson LR, Kufahl PR, Taylor SB, Nemirovsky NE, Olive MF. Sensitization to the motor stimulant effects of 3,4-methylenedioxypyrovalerone (MDPV) and cross-sensitization to methamphetamine in rats. J Drug Alcohol Res. (2016) 5:235967. 10.4303/jdar/235967 PubMed DOI PMC
Schindler CW, Thorndike EB, Suzuki M, Rice KC, Baumann MH. Pharmacological mechanisms underlying the cardiovascular effects of the bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV). Br J Pharmacol. (2016) 173:3492–501. 10.1111/bph.13640 PubMed DOI PMC
Berquist MD, Traxler HK, Mahler AM, Baker LE. Sensitization to the locomotor stimulant effects of “bath salt” constituents, 4-methylmethcathinone (4-MMC) and 3,4-methylenedioxypyrovalerone (MDPV), in male Sprague-Dawley rats. Drug Alc Depend. (2016) 164:128–34. 10.1016/j.drugalcdep.2016.05.001 PubMed DOI PMC
Gatch MB, Taylor CM, Forster MJ. Locomotor stimulant and discriminative stimulus effects of ‘bath salt’ cathinones. Behav Pharmacol. (2013) 24:437–47. 10.1097/FBP.0b013e328364166d PubMed DOI PMC
Swerdlow NR, Geyer MA. Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull. (1998) 24:285–301. 10.1093/oxfordjournals.schbul.a033326 PubMed DOI
Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl). (2001) 156:117–54. 10.1007/s002130100811 PubMed DOI
Hadamitzky M, Markou A, Kuczenski R. Extended access to methamphetamine self-administration affects sensorimotor gating in rats. Behav Brain Res. (2011) 217:386–90. 10.1016/j.bbr.2010.11.009 PubMed DOI PMC
Mansbach RS, Geyer MA, Braff DL. Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology (Berl). (1988) 94:507–14. 10.1007/BF00212846 PubMed DOI
Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, et al. The dopamine D-2, but not D-3 or D-4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci. (1999) 19:4627–33. 10.1523/JNEUROSCI.19-11-04627.1999 PubMed DOI PMC
Ralph RJ, Paulus MP, Geyer MA. Strain-specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. J Pharmacol Exp Ther. (2001) 298:148–55. Available online at: http://jpet.aspetjournals.org/content/298/1/148/tab-article-info PubMed
Sills TL. Amphetamine dose dependently disrupts prepulse inhibition of the acoustic startle response in rats within a narrow time window. Brain Res Bull. (1999) 48:445–8. 10.1016/S0361-9230(99)00036-2 PubMed DOI
Štefková K, Židková M, Horsley RR, Pinterová N, Šíchová K, Uttl L., et al. . Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-methylenedioxy-N-methylcathinone (methylone) in rats. Front Psychiatry (2017) 8:232. 10.3389/fpsyt.2017.00232 PubMed DOI PMC
Swerdlow NR, Mansbach RS, Geyer MA, Pulvirenti L, Koob GF, Braff DL. Amphetamine disruption of prepulse inhibition of acoustic startle is reversed by depletion of mesolimbic dopamine. Psychopharmacology (Berl). (1990) 100:413–6. 10.1007/BF02244616 PubMed DOI
Wan FJ, Swerdlow NR. Sensorimotor gating in rats is regulated by different dopamine-glutamate interactions in the nucleus accumbens core and shell subregions. Brain Res. (1996) 722:168–76. 10.1016/0006-8993(96)00209-0 PubMed DOI
Shortall SE, Macerola AE, Swaby RT, Jayson R, Korsah C, Pillidge KE, et al. . Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmacol. (2013) 23:1085–95. 10.1016/j.euroneuro.2012.09.005 PubMed DOI
Páleníček T, Balikova M, Rohanova M, Novak T, Horacek J, Fujakova M, et al. . Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats. Pharmacol Biochem Behav. (2011) 98:130–9. 10.1016/j.pbb.2010.12.011 PubMed DOI
Páleníček T, Lhotkova E, Zidkova M, Balikova M, Kuchar M, Himl M, et al. . Emerging toxicity of 5,6-methylenedioxy-2-aminoindane (MDAI): pharmacokinetics, behaviour, thermoregulation and LD50 in rats. Prog Neuropsychopharmacol Biol Psychiatry (2016) 69:49–59. 10.1016/j.pnpbp.2016.04.004 PubMed DOI
Anizan S, Ellefsen K, Concheiro M, Suzuki M, Rice KC, Baumann MH, et al. . 3,4-Methylenedioxypyrovalerone (MDPV) and metabolites quantification in human and rat plasma by liquid chromatography-high resolution mass spectrometry. Anal Chim Acta (2014) 827:54–63. 10.1016/j.aca.2014.04.015 PubMed DOI PMC
Horsley RR, Lhotkova E, Hajkova K, Jurasek B, Kuchar M, Páleníček T. Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue-Behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Res Bull. (2016) 126:102–10. 10.1016/j.brainresbull.2016.05.002 PubMed DOI
Baselt RC. Disposition of Toxic Drugs and Chemicals in Man. Seal Beach, CA: Biomedical Publications; (2014).
Upton RN, Doolette DJ. Kinetic aspects of drug disposition in the lungs. Clin Exp Pharmacol Physiol. (1999) 26:381–91. 10.1046/j.1440-1681.1999.03048.x PubMed DOI
Green AR, O'Shea E, Colado MI. A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol. (2004) 500:3–13. 10.1016/j.ejphar.2004.07.006 PubMed DOI
Green AR, Sanchez V, O'shea E, Saadat KS, Elliott JM, Colado MI. Effect of ambient temperature and a prior neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA) on the hyperthermic response of rats to a single or repeated (‘binge’ ingestion) low dose of MDMA. Psychopharmacology (Berl) (2004) 173:264–9. 10.1007/s00213-003-1725-2 PubMed DOI
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. J Faseb. (2008) 22:659–61. 10.1096/fj.07-9574LSF PubMed DOI
Archer J. Tests for emotionality in rats and mice: a review. Animal Behav. (1973) 21:205–35. 10.1016/S0003-3472(73)80065-X PubMed DOI
Walsh RN, Cummins RA. The Open-Field Test: a critical review. Psychol Bull. (1976) 83:482–504. 10.1037/0033-2909.83.3.482 PubMed DOI
Prut L, Belsung C. The open-field paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. (2003) 463:3–33. 10.1016/S0014-2999(03)01272-X PubMed DOI
Kuczenski R, Segal DS, Aizenstein ML. Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. J Neurosci. (1991) 11:2703–12. 10.1523/JNEUROSCI.11-09-02703.1991 PubMed DOI PMC
Vollenweider FX, Remensberger S, Hell D, Geyer MA. Opposite effects of 3,4 methylenedioxymethamphetamine (MDMA) on sensorimotor gating in rats versus healthy humans. Psychopharmacology (1999) 143:365–72. 10.1007/s002130050960 PubMed DOI
Palenicek T, Fujakova M, Brunovsky M, Horacek J, Gorman I, Balikova M, et al. . Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology (2013) 225:75–93. 10.1007/s00213-012-2797-7 PubMed DOI
Vaugeois JM, Bonnet JJ, Duterte-Boucher D, Costentin J. In vivo occupancy of the striatal dopamine uptake complex by various inhibitors does not predict their effects on locomotion. Eur J Pharmacol. (1993) 230:195–201. 10.1016/0014-2999(93)90802-O PubMed DOI
Banjaw MY, Fendt M, Schmidt WJ. Clozapine attenuates the locomotor sensitisation and the prepulse inhibition deficit induced by a repeated oral administration of Catha edulis extract and cathinone in rats. Behav Brain Res. (2005) 160:365–73. 10.1016/j.bbr.2005.01.002 PubMed DOI
Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry (2003) 27:1081–90. 10.1016/j.pnpbp.2003.09.004 PubMed DOI