Matriptase-2 and Hemojuvelin in Hepcidin Regulation: In Vivo Immunoblot Studies in Mask Mice

. 2021 Mar 06 ; 22 (5) : . [epub] 20210306

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33800732

Grantová podpora
18-13103S Grantová Agentura České Republiky
PROGRES Q26 Univerzita Karlova v Praze
LQ1604 National Sustainability Program II Ministry of Education, Youth and Sports of CR
CZ.1.05/1.1.00/02.0109 Ministry of Education, Youth and Sports of CR
RVO 86652036 Czech Academy of Sciences

Matriptase-2, a serine protease expressed in hepatocytes, is a negative regulator of hepcidin expression. The purpose of the study was to investigate the interaction of matriptase-2 with hemojuvelin protein in vivo. Mice lacking the matriptase-2 proteolytic activity (mask mice) display decreased content of hemojuvelin protein. Vice versa, the absence of hemojuvelin results in decreased liver content of matriptase-2, indicating that the two proteins interact. To further characterize the role of matriptase-2, we investigated iron metabolism in mask mice fed experimental diets. Administration of iron-enriched diet increased liver iron stores as well as hepcidin expression. Treatment of iron-overloaded mask mice with erythropoietin increased hemoglobin and hematocrit, indicating that the response to erythropoietin is intact in mask mice. Feeding of an iron-deficient diet to mask mice significantly increased spleen weight as well as the splenic content of erythroferrone and transferrin receptor proteins, indicating stress erythropoiesis. Liver hepcidin expression was decreased; expression of Id1 was not changed. Overall, the results suggest a complex interaction between matriptase-2 and hemojuvelin, and demonstrate that hepcidin can to some extent be regulated even in the absence of matriptase-2 proteolytic activity.

Zobrazit více v PubMed

Hooper J.D., Campagnolo L., Goodarzi G., Truong T.N., Stuhlmann H., Quigley J.P. Mouse matriptase-2: Identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues. Biochem. J. 2003;373:689–702. doi: 10.1042/bj20030390. PubMed DOI PMC

Finberg K.E., Heeney M.M., Campagna D.R., Aydınok Y., Pearson H.A., Hartman K.R., Mayo M.M., Samuel S.M., Strouse J.J., Markianos K., et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA) Nat. Genet. 2008;40:569–571. doi: 10.1038/ng.130. PubMed DOI PMC

Du X., She E., Gelbart T., Truksa J., Lee P., Xia Y., Khovananth K., Mudd S., Mann N., Moresco E.M.Y., et al. The Serine Protease TMPRSS6 Is Required to Sense Iron Deficiency. Science. 2008;320:1088–1092. doi: 10.1126/science.1157121. PubMed DOI PMC

Folgueras A.R., De Lara F.M., Pendás J.A.M., Garabaya C., Rodríguez F., Astudillo A., Bernal T., Cabanillas R., López-Otín C., Velasco G. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood. 2008;112:2539–2545. doi: 10.1182/blood-2008-04-149773. PubMed DOI

Finberg K.E., Whittlesey R.L., Fleming M.D., Andrews N.C. Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood. 2010;115:3817–3826. doi: 10.1182/blood-2009-05-224808. PubMed DOI PMC

Nai A., Rubio A., Campanella A., Gourbeyre O., Artuso I., Bordini J., Gineste A., Latour C., Besson-Fournier C., Céline B.-F., et al. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood. 2016;127:2327–2336. doi: 10.1182/blood-2015-11-681494. PubMed DOI PMC

Silvestri L., Pagani A., Nai A., De Domenico I., Kaplan J., Camaschella C. The Serine Protease Matriptase-2 (TMPRSS6) Inhibits Hepcidin Activation by Cleaving Membrane Hemojuvelin. Cell Metab. 2008;8:502–511. doi: 10.1016/j.cmet.2008.09.012. PubMed DOI PMC

Babitt J.L., Huang F.W., Wrighting D.M., Xia Y., Sidis Y., Samad T.A., Campagna J., Chung R.T., Schneyer A.L., Woolf C.J., et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 2006;38:531–539. doi: 10.1038/ng1777. PubMed DOI

Truksa J., Gelbart T., Peng H., Beutler E., Beutler B., Lee P.L. Suppression of the hepcidin-encoding gene Hamp permits iron overload in mice lacking both hemojuvelin and matriptase-2/TMPRSS6. Br. J. Haematol. 2009;147:571–581. doi: 10.1111/j.1365-2141.2009.07873.x. PubMed DOI

Nicolas G., Ramsay A.J., Mayeux P., Grandchamp B., Beaumont C., Velasco G., Vaulont S., Deschemin J.-C., Velasco G. Is EPO therapy able to correct iron deficiency anaemia caused by matriptase-2 deficiency? Br. J. Haematol. 2011;152:498–500. doi: 10.1111/j.1365-2141.2010.08473.x. PubMed DOI

Nicolas G., Viattea L., Bennouna M., Beaumontb C., Kahna A., Vaulont S., Hepcidin A. New Iron Regulatory Peptide. Blood Cells Mol. Dis. 2002;29:327–335. doi: 10.1006/bcmd.2002.0573. PubMed DOI

Vokurka M., Krijt J., Sulc K., Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol. Res. 2006;55:667–674. PubMed

Frýdlová J., Rychtarčíková Z., Gurieva I., Vokurka M., Truksa J., Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS ONE. 2017;12:e0186844. doi: 10.1371/journal.pone.0186844. PubMed DOI PMC

Kautz L., Jung G., Valore E.V., Rivella S., Nemeth E., Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014;46:678–684. doi: 10.1038/ng.2996. PubMed DOI PMC

Willemetz A., Lenoir A., Deschemin J.-C., Lopez-Otin C., Ramsay A.J., Vaulont S., Nicolas G. Matriptase-2 is essential for hepcidin repression during fetal life and postnatal development in mice to maintain iron homeostasis. Blood. 2014;124:441–444. doi: 10.1182/blood-2014-01-551150. PubMed DOI

Coffey R., Ganz T. Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. HemaSphere. 2018;2:e35. doi: 10.1097/HS9.0000000000000035. PubMed DOI PMC

Arezes J., Foy N., McHugh K., Sawant A., Quinkert D., Terraube V., Brinth A., Tam M., LaVallie E.R., Taylor S., et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132:1473–1477. doi: 10.1182/blood-2018-06-857995. PubMed DOI PMC

Wahedi M., Wortham A.M., Kleven M.D., Zhao N., Jue S., Enns C.A., Zhang A.-S. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J. Biol. Chem. 2017;292:18354–18371. doi: 10.1074/jbc.M117.801795. PubMed DOI PMC

Enns C.A., Jue S., Zhang A.-S. The ectodomain of matriptase-2 plays an important nonproteolytic role in suppressing hepcidin expression in mice. Blood. 2020;136:989–1001. doi: 10.1182/blood.2020005222. PubMed DOI PMC

Bartnikas T.B. Cutting not the key to TMPRSS6 activity? Blood. 2020;136:922–923. doi: 10.1182/blood.2020006608. PubMed DOI PMC

Krijt J., Fujikura Y., Ramsay A.J., Velasco G., Nečas E. Liver hemojuvelin protein levels in mice deficient in matriptase-2 (Tmprss6) Blood Cells Mol. Dis. 2011;47:133–137. doi: 10.1016/j.bcmd.2011.04.009. PubMed DOI

Zhang A.-S., West A.P., Wyman A.E., Bjorkman P.J., Enns C.A. Interaction of Hemojuvelin with Neogenin Results in Iron Accumulation in Human Embryonic Kidney 293 Cells. J. Biol. Chem. 2005;280:33885–33894. doi: 10.1074/jbc.M506207200. PubMed DOI

Frýdlová J., Přikryl P., Truksa J., Falke L.L., Du X., Gurieva I., Vokurka M., Krijt J. Effect of Erythropoietin, Iron Deficiency and Iron Overload on Liver Matriptase-2 (TMPRSS6) Protein Content in Mice and Rats. PLoS ONE. 2016;11:e0148540. doi: 10.1371/journal.pone.0148540. PubMed DOI PMC

Enns C.A., Ahmed R., Zhang A.-S. Neogenin Interacts with Matriptase-2 to Facilitate Hemojuvelin Cleavage. J. Biol. Chem. 2012;287:35104–35117. doi: 10.1074/jbc.M112.363937. PubMed DOI PMC

Gitlin-Domagalska A., Mangold M., Dębowski D., Ptaszyńska N., Anna Ł., Gütschow M., Rolka K. Matriptase-2: Monitoring and inhibiting its proteolytic activity. Future Med. Chem. 2018;10:2745–2761. doi: 10.4155/fmc-2018-0346. PubMed DOI

Belot A., Gourbeyre O., Palin A., Rubio A., Largounez A., Besson-Fournier C., Latour C., Lorgouilloux M., Gallitz I., Montagner A., et al. Endoplasmic reticulum stress controls iron metabolism through TMPRSS6 repression and hepcidin mRNA stabilization by RNA-binding protein HuR. Haematologica. 2020 doi: 10.3324/haematol.2019.237321. PubMed DOI PMC

Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: Distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25. doi: 10.1182/blood.V89.1.1. PubMed DOI

Kawabata H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019;133:46–54. doi: 10.1016/j.freeradbiomed.2018.06.037. PubMed DOI

Paulson R.F., Shi L., Wu D.C. Stress erythropoiesis: New signals and new stress progenitor cells. Curr. Opin. Hematol. 2011;18:139–145. doi: 10.1097/MOH.0b013e32834521c8. PubMed DOI PMC

Silvestri L., Pagani A., Camaschella C. Furin-mediated release of soluble hemojuvelin: A new link between hypoxia and iron homeostasis. Blood. 2008;111:924–931. doi: 10.1182/blood-2007-07-100677. PubMed DOI

Wang R.-H., Li C., Xu X., Zheng Y., Xiao C., Zerfas P., Cooperman S., Eckhaus M., Rouault T., Mishra L., et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab. 2005;2:399–409. doi: 10.1016/j.cmet.2005.10.010. PubMed DOI

Papanikolaou G., Samuels M.E., Ludwig E.H., MacDonald M.L.E., Franchini P.L., Dubé M.-P., Andres L., Macfarlane J., Sakellaropoulos N., Politou M., et al. Mutations in HFE2 cause iron overload in chromosome 1q–linked juvenile hemochromatosis. Nat. Genet. 2003;36:77–82. doi: 10.1038/ng1274. PubMed DOI

Huang F.W., Pinkus J.L., Pinkus G.S., Fleming M.D., Andrews N.C. A mouse model of juvenile hemochromatosis. J. Clin. Investig. 2005;115:2187–2191. doi: 10.1172/JCI25049. PubMed DOI PMC

Zhang A.-S., Gao J., Koeberl D.D., Enns C.A. The Role of Hepatocyte Hemojuvelin in the Regulation of Bone Morphogenic Protein-6 and Hepcidin Expression in Vivo. J. Biol. Chem. 2010;285:16416–16423. doi: 10.1074/jbc.M110.109488. PubMed DOI PMC

Zhang A.-S., Anderson S.A., Wang J., Yang F., DeMaster K., Ahmed R., Nizzi C.P., Eisenstein R.S., Tsukamoto H., Enns C.A. Suppression of hepatic hepcidin expression in response to acute iron deprivation is associated with an increase of matriptase-2 protein. Blood. 2011;117:1687–1699. doi: 10.1182/blood-2010-06-287292. PubMed DOI PMC

Nili M., Shinde U., Rotwein P. Soluble Repulsive Guidance Molecule c/Hemojuvelin Is a Broad Spectrum Bone Morphogenetic Protein (BMP) Antagonist and Inhibits both BMP2- and BMP6-mediated Signaling and Gene Expression. J. Biol. Chem. 2010;285:24783–24792. doi: 10.1074/jbc.M110.130286. PubMed DOI PMC

Pak M., Lopez M.A., Gabayan V., Ganz T., Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–3735. doi: 10.1182/blood-2006-06-028787. PubMed DOI PMC

Krijt J., Jonášová A., Neuwirtová R., Nečas E. Effect of erythropoietin on hepcidin expression in hemojuvelin-mutant mice. Blood Cells Mol. Dis. 2010;44:257–261. doi: 10.1016/j.bcmd.2010.02.012. PubMed DOI

Kempe D.S., Lang P.A., Duranton C., Akel A., Lang K.S., Huber S.M., Wieder T., Lang F. Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J. 2006;20:368–370. doi: 10.1096/fj.05-4872fje. PubMed DOI

Mirciov C., Wilkins S.J., Hung G.C.C., Helman S.L., Anderson G.J., Frazer D.M. Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica. 2018;103:1616–1626. doi: 10.3324/haematol.2017.187245. PubMed DOI PMC

Frýdlová J., Rogalsky D.W., Truksa J., Traeger L., Steinbicker A.U., Vokurka M., Krijt J. Liver HFE protein content is posttranscriptionally decreased in iron-deficient mice and rats. Am. J. Physiol. Liver Physiol. 2018;315:G560–G568. doi: 10.1152/ajpgi.00070.2018. PubMed DOI

Kautz L., Meynard D., Monnier A., Darnaud V., Bouvet R., Wang R.H., Deng C., Vaulont S., Mosser J., Coppin H., et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood. 2008;112:1503–1509. doi: 10.1182/blood-2008-03-143354. PubMed DOI

Chen K., Liu J., Heck S., Chasis J.A., An X., Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. USA. 2009;106:17413–17418. doi: 10.1073/pnas.0909296106. PubMed DOI PMC

Torrance J.D., Bothwell T.H. Tissue iron stores. In: Cook J.D., editor. Methods in Hematology. Churchill Livingstone; New York, NY, USA: 1981. pp. 90–115.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...