Matriptase-2 and Hemojuvelin in Hepcidin Regulation: In Vivo Immunoblot Studies in Mask Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-13103S
Grantová Agentura České Republiky
PROGRES Q26
Univerzita Karlova v Praze
LQ1604 National Sustainability Program II
Ministry of Education, Youth and Sports of CR
CZ.1.05/1.1.00/02.0109
Ministry of Education, Youth and Sports of CR
RVO 86652036
Czech Academy of Sciences
PubMed
33800732
PubMed Central
PMC7961762
DOI
10.3390/ijms22052650
PII: ijms22052650
Knihovny.cz E-zdroje
- Klíčová slova
- Hjv, Tfr2, Tfrc, Tmprss6, hepcidin, neogenin, transferrin receptor,
- MeSH
- deficit železa MeSH
- dietní železo farmakologie MeSH
- erythropoetin farmakologie MeSH
- GPI-vázané proteiny biosyntéza nedostatek genetika fyziologie MeSH
- hepcidiny biosyntéza genetika MeSH
- inhibitor diferenciace 1 biosyntéza genetika MeSH
- játra metabolismus MeSH
- kostní morfogenetický protein 6 biosyntéza genetika MeSH
- membránové proteiny nedostatek genetika fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- orgánová specificita MeSH
- přetížení železem metabolismus MeSH
- promotorové oblasti (genetika) genetika MeSH
- protein hemochromatózy biosyntéza nedostatek genetika fyziologie MeSH
- proteinové domény MeSH
- regulace genové exprese účinky léků MeSH
- rekombinantní proteiny metabolismus MeSH
- serinové endopeptidasy nedostatek genetika fyziologie MeSH
- slezina metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Bmp6 protein, mouse MeSH Prohlížeč
- dietní železo MeSH
- erythropoetin MeSH
- GPI-vázané proteiny MeSH
- Hamp protein, mouse MeSH Prohlížeč
- hepcidiny MeSH
- HJV protein, mouse MeSH Prohlížeč
- Idb1 protein, mouse MeSH Prohlížeč
- inhibitor diferenciace 1 MeSH
- kostní morfogenetický protein 6 MeSH
- matriptase 2 MeSH Prohlížeč
- membránové proteiny MeSH
- protein hemochromatózy MeSH
- rekombinantní proteiny MeSH
- serinové endopeptidasy MeSH
Matriptase-2, a serine protease expressed in hepatocytes, is a negative regulator of hepcidin expression. The purpose of the study was to investigate the interaction of matriptase-2 with hemojuvelin protein in vivo. Mice lacking the matriptase-2 proteolytic activity (mask mice) display decreased content of hemojuvelin protein. Vice versa, the absence of hemojuvelin results in decreased liver content of matriptase-2, indicating that the two proteins interact. To further characterize the role of matriptase-2, we investigated iron metabolism in mask mice fed experimental diets. Administration of iron-enriched diet increased liver iron stores as well as hepcidin expression. Treatment of iron-overloaded mask mice with erythropoietin increased hemoglobin and hematocrit, indicating that the response to erythropoietin is intact in mask mice. Feeding of an iron-deficient diet to mask mice significantly increased spleen weight as well as the splenic content of erythroferrone and transferrin receptor proteins, indicating stress erythropoiesis. Liver hepcidin expression was decreased; expression of Id1 was not changed. Overall, the results suggest a complex interaction between matriptase-2 and hemojuvelin, and demonstrate that hepcidin can to some extent be regulated even in the absence of matriptase-2 proteolytic activity.
Zobrazit více v PubMed
Hooper J.D., Campagnolo L., Goodarzi G., Truong T.N., Stuhlmann H., Quigley J.P. Mouse matriptase-2: Identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues. Biochem. J. 2003;373:689–702. doi: 10.1042/bj20030390. PubMed DOI PMC
Finberg K.E., Heeney M.M., Campagna D.R., Aydınok Y., Pearson H.A., Hartman K.R., Mayo M.M., Samuel S.M., Strouse J.J., Markianos K., et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA) Nat. Genet. 2008;40:569–571. doi: 10.1038/ng.130. PubMed DOI PMC
Du X., She E., Gelbart T., Truksa J., Lee P., Xia Y., Khovananth K., Mudd S., Mann N., Moresco E.M.Y., et al. The Serine Protease TMPRSS6 Is Required to Sense Iron Deficiency. Science. 2008;320:1088–1092. doi: 10.1126/science.1157121. PubMed DOI PMC
Folgueras A.R., De Lara F.M., Pendás J.A.M., Garabaya C., Rodríguez F., Astudillo A., Bernal T., Cabanillas R., López-Otín C., Velasco G. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood. 2008;112:2539–2545. doi: 10.1182/blood-2008-04-149773. PubMed DOI
Finberg K.E., Whittlesey R.L., Fleming M.D., Andrews N.C. Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood. 2010;115:3817–3826. doi: 10.1182/blood-2009-05-224808. PubMed DOI PMC
Nai A., Rubio A., Campanella A., Gourbeyre O., Artuso I., Bordini J., Gineste A., Latour C., Besson-Fournier C., Céline B.-F., et al. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood. 2016;127:2327–2336. doi: 10.1182/blood-2015-11-681494. PubMed DOI PMC
Silvestri L., Pagani A., Nai A., De Domenico I., Kaplan J., Camaschella C. The Serine Protease Matriptase-2 (TMPRSS6) Inhibits Hepcidin Activation by Cleaving Membrane Hemojuvelin. Cell Metab. 2008;8:502–511. doi: 10.1016/j.cmet.2008.09.012. PubMed DOI PMC
Babitt J.L., Huang F.W., Wrighting D.M., Xia Y., Sidis Y., Samad T.A., Campagna J., Chung R.T., Schneyer A.L., Woolf C.J., et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 2006;38:531–539. doi: 10.1038/ng1777. PubMed DOI
Truksa J., Gelbart T., Peng H., Beutler E., Beutler B., Lee P.L. Suppression of the hepcidin-encoding gene Hamp permits iron overload in mice lacking both hemojuvelin and matriptase-2/TMPRSS6. Br. J. Haematol. 2009;147:571–581. doi: 10.1111/j.1365-2141.2009.07873.x. PubMed DOI
Nicolas G., Ramsay A.J., Mayeux P., Grandchamp B., Beaumont C., Velasco G., Vaulont S., Deschemin J.-C., Velasco G. Is EPO therapy able to correct iron deficiency anaemia caused by matriptase-2 deficiency? Br. J. Haematol. 2011;152:498–500. doi: 10.1111/j.1365-2141.2010.08473.x. PubMed DOI
Nicolas G., Viattea L., Bennouna M., Beaumontb C., Kahna A., Vaulont S., Hepcidin A. New Iron Regulatory Peptide. Blood Cells Mol. Dis. 2002;29:327–335. doi: 10.1006/bcmd.2002.0573. PubMed DOI
Vokurka M., Krijt J., Sulc K., Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol. Res. 2006;55:667–674. PubMed
Frýdlová J., Rychtarčíková Z., Gurieva I., Vokurka M., Truksa J., Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS ONE. 2017;12:e0186844. doi: 10.1371/journal.pone.0186844. PubMed DOI PMC
Kautz L., Jung G., Valore E.V., Rivella S., Nemeth E., Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014;46:678–684. doi: 10.1038/ng.2996. PubMed DOI PMC
Willemetz A., Lenoir A., Deschemin J.-C., Lopez-Otin C., Ramsay A.J., Vaulont S., Nicolas G. Matriptase-2 is essential for hepcidin repression during fetal life and postnatal development in mice to maintain iron homeostasis. Blood. 2014;124:441–444. doi: 10.1182/blood-2014-01-551150. PubMed DOI
Coffey R., Ganz T. Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. HemaSphere. 2018;2:e35. doi: 10.1097/HS9.0000000000000035. PubMed DOI PMC
Arezes J., Foy N., McHugh K., Sawant A., Quinkert D., Terraube V., Brinth A., Tam M., LaVallie E.R., Taylor S., et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132:1473–1477. doi: 10.1182/blood-2018-06-857995. PubMed DOI PMC
Wahedi M., Wortham A.M., Kleven M.D., Zhao N., Jue S., Enns C.A., Zhang A.-S. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J. Biol. Chem. 2017;292:18354–18371. doi: 10.1074/jbc.M117.801795. PubMed DOI PMC
Enns C.A., Jue S., Zhang A.-S. The ectodomain of matriptase-2 plays an important nonproteolytic role in suppressing hepcidin expression in mice. Blood. 2020;136:989–1001. doi: 10.1182/blood.2020005222. PubMed DOI PMC
Bartnikas T.B. Cutting not the key to TMPRSS6 activity? Blood. 2020;136:922–923. doi: 10.1182/blood.2020006608. PubMed DOI PMC
Krijt J., Fujikura Y., Ramsay A.J., Velasco G., Nečas E. Liver hemojuvelin protein levels in mice deficient in matriptase-2 (Tmprss6) Blood Cells Mol. Dis. 2011;47:133–137. doi: 10.1016/j.bcmd.2011.04.009. PubMed DOI
Zhang A.-S., West A.P., Wyman A.E., Bjorkman P.J., Enns C.A. Interaction of Hemojuvelin with Neogenin Results in Iron Accumulation in Human Embryonic Kidney 293 Cells. J. Biol. Chem. 2005;280:33885–33894. doi: 10.1074/jbc.M506207200. PubMed DOI
Frýdlová J., Přikryl P., Truksa J., Falke L.L., Du X., Gurieva I., Vokurka M., Krijt J. Effect of Erythropoietin, Iron Deficiency and Iron Overload on Liver Matriptase-2 (TMPRSS6) Protein Content in Mice and Rats. PLoS ONE. 2016;11:e0148540. doi: 10.1371/journal.pone.0148540. PubMed DOI PMC
Enns C.A., Ahmed R., Zhang A.-S. Neogenin Interacts with Matriptase-2 to Facilitate Hemojuvelin Cleavage. J. Biol. Chem. 2012;287:35104–35117. doi: 10.1074/jbc.M112.363937. PubMed DOI PMC
Gitlin-Domagalska A., Mangold M., Dębowski D., Ptaszyńska N., Anna Ł., Gütschow M., Rolka K. Matriptase-2: Monitoring and inhibiting its proteolytic activity. Future Med. Chem. 2018;10:2745–2761. doi: 10.4155/fmc-2018-0346. PubMed DOI
Belot A., Gourbeyre O., Palin A., Rubio A., Largounez A., Besson-Fournier C., Latour C., Lorgouilloux M., Gallitz I., Montagner A., et al. Endoplasmic reticulum stress controls iron metabolism through TMPRSS6 repression and hepcidin mRNA stabilization by RNA-binding protein HuR. Haematologica. 2020 doi: 10.3324/haematol.2019.237321. PubMed DOI PMC
Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: Distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25. doi: 10.1182/blood.V89.1.1. PubMed DOI
Kawabata H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019;133:46–54. doi: 10.1016/j.freeradbiomed.2018.06.037. PubMed DOI
Paulson R.F., Shi L., Wu D.C. Stress erythropoiesis: New signals and new stress progenitor cells. Curr. Opin. Hematol. 2011;18:139–145. doi: 10.1097/MOH.0b013e32834521c8. PubMed DOI PMC
Silvestri L., Pagani A., Camaschella C. Furin-mediated release of soluble hemojuvelin: A new link between hypoxia and iron homeostasis. Blood. 2008;111:924–931. doi: 10.1182/blood-2007-07-100677. PubMed DOI
Wang R.-H., Li C., Xu X., Zheng Y., Xiao C., Zerfas P., Cooperman S., Eckhaus M., Rouault T., Mishra L., et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab. 2005;2:399–409. doi: 10.1016/j.cmet.2005.10.010. PubMed DOI
Papanikolaou G., Samuels M.E., Ludwig E.H., MacDonald M.L.E., Franchini P.L., Dubé M.-P., Andres L., Macfarlane J., Sakellaropoulos N., Politou M., et al. Mutations in HFE2 cause iron overload in chromosome 1q–linked juvenile hemochromatosis. Nat. Genet. 2003;36:77–82. doi: 10.1038/ng1274. PubMed DOI
Huang F.W., Pinkus J.L., Pinkus G.S., Fleming M.D., Andrews N.C. A mouse model of juvenile hemochromatosis. J. Clin. Investig. 2005;115:2187–2191. doi: 10.1172/JCI25049. PubMed DOI PMC
Zhang A.-S., Gao J., Koeberl D.D., Enns C.A. The Role of Hepatocyte Hemojuvelin in the Regulation of Bone Morphogenic Protein-6 and Hepcidin Expression in Vivo. J. Biol. Chem. 2010;285:16416–16423. doi: 10.1074/jbc.M110.109488. PubMed DOI PMC
Zhang A.-S., Anderson S.A., Wang J., Yang F., DeMaster K., Ahmed R., Nizzi C.P., Eisenstein R.S., Tsukamoto H., Enns C.A. Suppression of hepatic hepcidin expression in response to acute iron deprivation is associated with an increase of matriptase-2 protein. Blood. 2011;117:1687–1699. doi: 10.1182/blood-2010-06-287292. PubMed DOI PMC
Nili M., Shinde U., Rotwein P. Soluble Repulsive Guidance Molecule c/Hemojuvelin Is a Broad Spectrum Bone Morphogenetic Protein (BMP) Antagonist and Inhibits both BMP2- and BMP6-mediated Signaling and Gene Expression. J. Biol. Chem. 2010;285:24783–24792. doi: 10.1074/jbc.M110.130286. PubMed DOI PMC
Pak M., Lopez M.A., Gabayan V., Ganz T., Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–3735. doi: 10.1182/blood-2006-06-028787. PubMed DOI PMC
Krijt J., Jonášová A., Neuwirtová R., Nečas E. Effect of erythropoietin on hepcidin expression in hemojuvelin-mutant mice. Blood Cells Mol. Dis. 2010;44:257–261. doi: 10.1016/j.bcmd.2010.02.012. PubMed DOI
Kempe D.S., Lang P.A., Duranton C., Akel A., Lang K.S., Huber S.M., Wieder T., Lang F. Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J. 2006;20:368–370. doi: 10.1096/fj.05-4872fje. PubMed DOI
Mirciov C., Wilkins S.J., Hung G.C.C., Helman S.L., Anderson G.J., Frazer D.M. Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica. 2018;103:1616–1626. doi: 10.3324/haematol.2017.187245. PubMed DOI PMC
Frýdlová J., Rogalsky D.W., Truksa J., Traeger L., Steinbicker A.U., Vokurka M., Krijt J. Liver HFE protein content is posttranscriptionally decreased in iron-deficient mice and rats. Am. J. Physiol. Liver Physiol. 2018;315:G560–G568. doi: 10.1152/ajpgi.00070.2018. PubMed DOI
Kautz L., Meynard D., Monnier A., Darnaud V., Bouvet R., Wang R.H., Deng C., Vaulont S., Mosser J., Coppin H., et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood. 2008;112:1503–1509. doi: 10.1182/blood-2008-03-143354. PubMed DOI
Chen K., Liu J., Heck S., Chasis J.A., An X., Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. USA. 2009;106:17413–17418. doi: 10.1073/pnas.0909296106. PubMed DOI PMC
Torrance J.D., Bothwell T.H. Tissue iron stores. In: Cook J.D., editor. Methods in Hematology. Churchill Livingstone; New York, NY, USA: 1981. pp. 90–115.