Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
310030_197410
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
31003A_173074
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
LIFE18 NAT/ES/000121
European Commission (EC)
S-PD-22-72
Lietuvos Mokslo Taryba (Research Council of Lithuania)
UIDB/04292/2020
Ministry of Education and Science | Fundação para a Ciência e a Tecnologia (Portuguese Science and Technology Foundation)
UIDP/04292/2020
Ministry of Education and Science | Fundação para a Ciência e a Tecnologia (Portuguese Science and Technology Foundation)
LA/P/0069/2020
Ministry of Education and Science | Fundação para a Ciência e a Tecnologia (Portuguese Science and Technology Foundation)
331957
Academy of Finland (Suomen Akatemia)
PRG1266
Eesti Teadusagentuur (Estonian Research Council)
871128
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
PubMed
38278985
DOI
10.1038/s41559-023-02305-4
PII: 10.1038/s41559-023-02305-4
Knihovny.cz E-zdroje
- MeSH
- bezobratlí MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- lidé MeSH
- řeky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.
Balaton Limnological Research Institute Tihany Hungary
Centre for Ecological Research Institute of Aquatic Ecology Debrecen Hungary
Czech Hydrometeorological Institute Praha Czech Republic
Department of Animal Sciences and Aquatic Ecology Ghent University Ghent Belgium
Department of Biological Sciences University of Bergen Bergen Norway
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Earth and Environmental Sciences DISAT University of Milano Bicocca Milan Italy
Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland
Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
Department of Hydrobiology University of Pécs Pécs Hungary
Department of Plant Biology and Ecology University of the Basque Country Leioa Spain
Ecology and Genetics Research Unit University of Oulu Oulu Finland
Eurac Research Institute for Alpine Environment Bolzano Bozen Italy
Faculty of Biology University of Duisburg Essen Essen Germany
FEHM Lab University of Barcelona Barcelona Spain
Fisheries Ecosystems Advisory Services Marine Institute Newport Ireland
Flanders Environment Agency Aalst Belgium
Freshwater and Marine Solutions Finnish Environment Institute Oulu Finland
Geography Department Humboldt Universität zu Berlin Berlin Germany
Geography Research Unit University of Oulu Oulu Finland
iES Landau Institute for Environmental Sciences RPTU Kaiserslautern Landau Landau Germany
IHCantabria Instituto de Hidráulica Ambiental de la Universidad de Cantabria Santander Spain
INRAE UR RiverLy centre de Lyon Villeurbanne Villeurbanne France
Institute of Biology University of Latvia Riga Latvia
Institute of Ecology Nature Research Centre Vilnius Lithuania
NIVA Denmark Copenhagen Denmark
Norwegian Institute for Nature Research Oslo Norway
Norwegian Institute for Water Research Oslo Norway
Oulanka Research Station University of Oulu Infrastructure Platform Kuusamo Finland
School of Science and Technology Nottingham Trent University Nottingham UK
T G Masaryk Water Research Institute p r i Brno Czech Republic
Univ Lyon Université Claude Bernard Lyon 1 CNRS ENTPE UMR 5023 LEHNA Villeurbanne France
Wageningen Environmental Research Wageningen University and Research Wageningen Netherlands
Zobrazit více v PubMed
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011). PubMed
Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015). PubMed PMC
Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A. & Katsuki, K. Human-induced marine ecological degradation: micropaleontological perspectives. Ecol. Evol. 2, 3242–3268 (2012). PubMed PMC
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015). PubMed
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019). PubMed
Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020). PubMed PMC
Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013). PubMed PMC
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014). PubMed
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019). PubMed
Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55–67 (2020). PubMed
Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020). PubMed PMC
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020). PubMed
Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020). PubMed
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021). PubMed PMC
Carvalheiro, L. G. et al. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol. Lett. 16, 870–878 (2013). PubMed PMC
Schipper, A. M. et al. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob. Change Biol. 22, 3948–3959 (2016).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017). PubMed PMC
Haase, P. et al. The recovery of European freshwater biodiversity has come to a halt. Nature 620, 582–588 (2023). PubMed PMC
de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).
Kuczynski, L., Ontiveros, V. J. & Hillebrand, H. Biodiversity time series are biased towards increasing species richness in changing environments. Nat. Ecol. Evol. 7, 994–1001 (2023). PubMed PMC
Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016). PubMed
Cardinale, B. J., Gonzalez, A., Allington, G. R. H. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).
Valdez, J. W. et al. The undetectability of global biodiversity trends using local species richness. Ecography 2023, e06604 (2023).
Catford, J. A., Wilson, J. R. U., Pyšek, P., Hulme, P. E. & Duncan, R. P. Addressing context dependence in ecology. Trends Ecol. Evol. 37, 158–170 (2022). PubMed
Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015). PubMed
Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).
Ludsin, S. A., Kershner, M. W., Blocksom, K. A., Knight, R. L. & Stein, R. A. Life after death in Lake Erie: nutrient controls drive fish species richness, rehabilitation. Ecol. Appl. 11, 731–746 (2001).
Fournier, A. M. V., White, E. R. & Heard, S. B. Site-selection bias and apparent population declines in long-term studies. Conserv. Biol. 33, 1370–1379 (2019). PubMed
Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010). PubMed
Bonada, N., Prat, N., Resh, V. H. & Statzner, B. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu. Rev. Entomol. 51, 495–523 (2006). PubMed
Pharaoh, E., Diamond, M., Ormerod, S. J., Rutt, G. & Vaughan, I. P. Evidence of biological recovery from gross pollution in English and Welsh rivers over three decades. Sci. Total Environ. 878, 163107 (2023). PubMed
Water Framework Directive (WFD). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Comm. 327, 1–72 (2000).
Birk, S. et al. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 18, 31–41 (2012).
Bennett, C. et al. Bringing European river quality into line: an exercise to intercalibrate macro-invertebrate classification methods. Hydrobiologia 667, 31–48 (2011).
Desquilbet, M. et al. Comment on ‘Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 370, eabd8947 (2020). PubMed
Giakoumis, T. & Voulvoulis, N. The transition of EU water policy towards the Water Framework Directive’s Integrated River Basin Management Paradigm. Environ. Manage. 62, 819–831 (2018). PubMed PMC
The European Environment—State and Outlook 2020 (European Environment Agency, 2020); https://www.eea.europa.eu/soer/publications/soer-2020
Gozlan, R. E., Karimov, B. K., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).
O’Briain, R. Climate change and European rivers: an eco-hydromorphological perspective. Ecohydrology 12, e2099 (2019).
Wolfram, J., Stehle, S., Bub, S., Petschick, L. L. & Schulz, R. Water quality and ecological risks in European surface waters—monitoring improves while water quality decreases. Environ. Int. 152, 106479 (2021). PubMed
Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90 (2017).
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013). PubMed
Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017). PubMed
Anderson, C. B. Biodiversity monitoring, earth observations and the ecology of scale. Ecol. Lett. 21, 1572–1585 (2018). PubMed
Miller, S. W., Budy, P. & Schmidt, J. C. Quantifying macroinvertebrate responses to in-stream habitat restoration: applications of meta-analysis to river restoration. Restor. Ecol. 18, 8–19 (2010).
Ferreira, W. R. et al. Importance of environmental factors for the richness and distribution of benthic macroinvertebrates in tropical headwater streams. Freshw. Sci. 33, 860–871 (2014).
Hodgson, J. A., Thomas, C. D., Wintle, B. A. & Moilanen, A. Climate change, connectivity and conservation decision making: back to basics. J. Appl. Ecol. 46, 964–969 (2009).
Mortelliti, A., Amori, G. & Boitani, L. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163, 535–547 (2010). PubMed
Crossley, M. S. et al. No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nat. Ecol. Evol. 4, 1368–1376 (2020). PubMed
Johnson, R. K. & Hering, D. Spatial congruency of benthic diatom, invertebrate, macrophyte, and fish assemblages in European streams. Ecol. Appl. 20, 978–992 (2010). PubMed
Vellend, M. The biodiversity conservation paradox. Am. Sci. 105, 94–101 (2017).
Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019). PubMed
Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).
Heino, J. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol. Rev. 88, 166–178 (2013). PubMed
Ruaro, R., Gubiani, É. A., Hughes, R. M. & Mormul, R. P. Global trends and challenges in multimetric indices of biological condition. Ecol. Indic. 110, 105862 (2020).
Hawkins, C. P. Quantifying biological integrity by taxonomic completeness: its utility in regional and global assessments. Ecol. Appl. 16, 1277–1294 (2006). PubMed
Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).
Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016). PubMed
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014). PubMed PMC
Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. R. Soc. B 286, 20191189 (2019). PubMed PMC
Jarzyna, M. A. & Jetz, W. Taxonomic and functional diversity change is scale dependent. Nat. Commun. 9, 2565 (2018). PubMed PMC
Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).
Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 12, 177–179 (2003).
Haase, P. et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities.Sci. Total Environ. 658, 1531–1538 (2019). PubMed
Vitecek, S., Johnson, R. K. & Poikane, S. Assessing the ecological status of European rivers and lakes using benthic invertebrate communities: a practical catalogue of metrics and methods. Water 13, 346 (2021).
R Core Team. R: A Language and Environment for Statistical Computing (2022); https://www.r-project.org
Huber, P. J. Robust Statistical Procedures 2nd edn (SIAM, 1996).
EuroGeographics. Countries—Administrative Units (2020); https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/countries