Quantitative Method for Monitoring Tumor Evolution During and After Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
B83D22001050004
Italian Ministry of University and Research
PubMed
40710392
PubMed Central
PMC12299402
DOI
10.3390/jpm15070275
PII: jpm15070275
Knihovny.cz E-zdroje
- Klíčová slova
- monitoring treatment response, predictive personalized tumor progression, support clinical decision-making, tumor growth,
- Publikační typ
- časopisecké články MeSH
Objectives: The quantitative analysis of tumor progression-monitored during and immediately after therapeutic interventions-can yield valuable insights into both long-term disease dynamics and treatment efficacy. Methods: We used a computational approach designed to support clinical decision-making, with a focus on personalized patient care, based on modeling therapy effects using effective parameters of the Gompertz law. Results: The method is applied to data from in vivo models undergoing neoadjuvant chemoradiotherapy, as well as conventional and FLASH radiation treatments. Conclusions: This user-friendly, phenomenological model captures distinct phases of treatment response and identifies a critical dose threshold distinguishing complete response from partial response or tumor regrowth. These findings lay the groundwork for real-time quantitative monitoring of disease progression during therapy and contribute to a more tailored and predictive clinical strategy.
Department of Medicine and Surgery University of Enna Kore 94100 Enna Italy
Istituto Nazionale Fisica Nucleare Sezione di Catania 95123 Catania Italy
Zobrazit více v PubMed
World Health Organization Cancer. [(accessed on 3 June 2025)]; Available online: https://www.who.int/en/news-room/fact-sheets/detail/cancer.
Filho A.M., Laversanne M., Ferlay J., Colombet M., Piñeros M., Znaor A., Parkin D.M., Soerjomataram I., Bray F. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int. J. Cancer. 2025;156:1336–1346. doi: 10.1002/ijc.35278. PubMed DOI
Ghaffari Laleh N., Loeffler C.M.L., Grajek J., Staňková K., Pearson A.T., Muti H.S., Trautwein C., Enderling H., Poleszczuk J., Kather J.N. Classical mathematical models for prediction of response to chemotherapy and immunotherapy. PLoS Comput. Biol. 2022;18:e1009822. doi: 10.1371/journal.pcbi.1009822. PubMed DOI PMC
Roudko V., Greenbaum B., Bhardwaj N. Computational prediction and validation of tumor-associated neoantigens. Front. Immunol. 2020;11:27. doi: 10.3389/fimmu.2020.00027. PubMed DOI PMC
Bostel T., Dreher C., Wollschläger D., Mayer A., König F., Bickelhaupt S., Schlemmer H.P., Huber P.E., Sterzing F., Bäumer P., et al. Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily T2-and diffusion-weighted MRI. Radiat. Oncol. 2020;15:171. doi: 10.1186/s13014-020-01613-4. PubMed DOI PMC
Biros G., Mang A., Menze B.H., Schulte M. Inverse Biophysical Modeling and Machine Learning in Personalized Oncology (Dagstuhl Seminar 23022) Dagstuhl Rep. 2023;13:36–67.
Kutuva A.R., Caudell J.J., Yamoah K., Enderling H., Zahid M.U. Mathematical modeling of radiotherapy: Impact of model selection on estimating minimum radiation dose for tumor control. Front. Oncol. 2023;13:1130966. doi: 10.3389/fonc.2023.1130966. PubMed DOI PMC
Van Houdt P.J., Yang Y., Van der Heide U.A. Quantitative magnetic resonance imaging for biological image-guided adaptive radiotherapy. Front. Oncol. 2021;10:615643. doi: 10.3389/fonc.2020.615643. PubMed DOI PMC
Metz M.C., Ezhov I., Peeken J.C., Buchner J.A., Lipkova J., Kofler F., Waldmannstetter D., Delbridge C., Diehl C., Bernhardt D., et al. Toward image-based personalization of glioblastoma therapy: A clinical and biological validation study of a novel, deep learning-driven tumor growth model. Neuro-Oncol. Adv. 2024;6:vdad171. doi: 10.1093/noajnl/vdad171. PubMed DOI PMC
Castorina P., Castiglione F., Ferini G., Forte S., Martorana E. Computational Approach for Spatially Fractionated Radiation Therapy (SFRT) and Immunological Response in Precision Radiation Therapy. J. Pers. Med. 2024;14:436. doi: 10.3390/jpm14040436. PubMed DOI PMC
Cavalcante B.R.R., Freitas R.D., de Oliveira Siquara da Rocha L., de Souza Batista Dos Santos R., de Freitas Souza B.S., Ramos P.I.P., Rocha G.V., Rocha C.A.G. In silico approaches for drug repurposing in oncology: A scoping review. Front. Pharmacol. 2024;15:1400029. doi: 10.3389/fphar.2024.1400029. PubMed DOI PMC
Martorana E., Castorina P., Ferini G., Forte S., Mare M. Forecasting Individual Patients’ Best Time for Surgery in Colon-Rectal Cancer by Tumor Regression during and after Neoadjuvant Radiochemotherapy. J. Pers. Med. 2023;13:851. doi: 10.3390/jpm13050851. PubMed DOI PMC
Jung S.H., Heo S.H., Kim J.W., Jeong Y.Y., Shin S.S., Soung M.G., Kim H.R., Kang H.K. Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: Diffusion-weighted 3 Tesla MR imaging. J. Magn. Reson. Imaging. 2012;35:110–116. doi: 10.1002/jmri.22749. PubMed DOI
Castorina P., Ferini G., Martorana E., Forte S. Tumor volume regression during and after radiochemotherapy: A macroscopic description. J. Pers. Med. 2022;12:530. doi: 10.3390/jpm12040530. PubMed DOI PMC
Zahid M.U., Mohamed A.S., Caudell J.J., Harrison L.B., Fuller C.D., Moros E.G., Enderling H. Dynamics-adapted radiotherapy dose (dard) for head and neck cancer radiotherapy dose personalization. J. Pers. Med. 2021;11:1124. doi: 10.3390/jpm11111124. PubMed DOI PMC
Delli Pizzi A., Cianci R., Genovesi D., Esposito G., Timpani M., Tavoletta A., Pulsone P., Basilico R., Gabrielli D., Rosa C., et al. Performance of diffusion-weighted magnetic resonance imaging at 3.0 T for early assessment of tumor response in locally advanced rectal cancer treated with preoperative chemoradiation therapy. Abdom. Radiol. 2018;43:2221–2230. doi: 10.1007/s00261-018-1457-8. PubMed DOI
Wasserberg N. Interval to surgery after neoadjuvant treatment for colorectal cancer. World J. Gastroenterol. WJG. 2014;20:4256. doi: 10.3748/wjg.v20.i15.4256. PubMed DOI PMC
Park S., Lee Y., Kim T.S., Kim S.K., Han J.Y. Response evaluation after immunotherapy in NSCLC: Early response assessment using FDG PET/CT. Medicine. 2020;99:e23815. doi: 10.1097/MD.0000000000023815. PubMed DOI PMC
Nakata J., Isohashi K., Oka Y., Nakajima H., Morimoto S., Fujiki F., Oji Y., Tsuboi A., Kumanogoh A., Hashimoto N., et al. Imaging Assessment of Tumor Response in the Era of Immunotherapy. Diagnostics. 2021;11:1041. doi: 10.3390/diagnostics11061041. PubMed DOI PMC
Jarrett A.M., Lima E.A., Hormuth D.A., McKenna M.T., Feng X., Ekrut D.A., Resende A.C.M., Brock A., Yankeelov T.E. Mathematical models of tumor cell proliferation: A review of the literature. Expert Rev. Anticancer Ther. 2018;18:1271–1286. doi: 10.1080/14737140.2018.1527689. PubMed DOI PMC
Yin A., Moes D.J.A., van Hasselt J.G., Swen J.J., Guchelaar H.J. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacometrics Syst. Pharmacol. 2019;8:720–737. doi: 10.1002/psp4.12450. PubMed DOI PMC
Sfakianakis N., Chaplain M.A. International Conference by Center for Mathematical Modeling and Data Science, Osaka University. Springer; Berlin/Heidelberg, Germany: 2020. Mathematical modelling of cancer invasion: A review; pp. 153–172.
Butner J.D., Dogra P., Chung C., Pasqualini R., Arap W., Lowengrub J., Cristini V., Wang Z. Mathematical modeling of cancer immunotherapy for personalized clinical translation. Nat. Comput. Sci. 2022;2:785–796. doi: 10.1038/s43588-022-00377-z. PubMed DOI PMC
El-Sayed S.M., El-Gebaly R.H., Fathy M.M., Abdelaziz D.M. Stereotactic body radiation therapy for prostate cancer: A dosimetric comparison of IMRT and VMAT using flattening filter and flattening filter-free beams. Radiat. Environ. Biophys. 2024;63:423–431. doi: 10.1007/s00411-024-01078-z. PubMed DOI
Wei Z., Peng X., He L., Wang J., Liu Z., Xiao J. Treatment plan comparison of volumetric-modulated arc therapy to intensity-modulated radiotherapy in lung stereotactic body radiotherapy using either 6- or 10-MV photon energies. J. Appl. Clin. Med. Phys. 2022;23:e13714. doi: 10.1002/acm2.13714. PubMed DOI PMC
Faye M.D., Alfieri J. Advances in Radiation Oncology for the Treatment of Cervical Cancer. Curr. Oncol. 2022;29:928–944. doi: 10.3390/curroncol29020079. PubMed DOI PMC
Vadalà R.E., Santacaterina A., Sindoni A., Platania A., Arcudi A., Ferini G., Mazzei M.M., Marletta D., Rifatto C., Risoleti E.V.I., et al. Stereotactic body radiotherapy in non-operable lung cancer patients. Clin. Transl. Oncol. 2016;18:1158–1159. doi: 10.1007/s12094-016-1552-7. PubMed DOI
Ferini G., Viola A., Valenti V., Tripoli A., Molino L., Marchese A.V., Illari S.I., Borzì G.R., Prestifilippo A., Umana G.E., et al. Whole Brain Irradiation or Stereotactic RadioSurgery for five or more brain metastases (WHOBI-STER): A prospective comparative study of neurocognitive outcomes, level of autonomy in daily activities and quality of life. Clin. Transl. Radiat. Oncol. 2021;32:52–58. doi: 10.1016/j.ctro.2021.11.008. PubMed DOI PMC
Onal C., Efe E., Bozca R., Yavas C., Yavas G., Arslan G. The impact of margin reduction on radiation dose distribution of ultra-hypofractionated prostate radiotherapy utilizing a 1.5-T MR-Linac. J. Appl. Clin. Med. Phys. 2024;25:e14179. doi: 10.1002/acm2.14179. PubMed DOI PMC
Ma T.M., Neylon J., Casado M., Sharma S., Sheng K., Low D., Yang Y., Steinberg M.L., Lamb J., Cao M., et al. Dosimetric impact of interfraction prostate and seminal vesicle volume changes and rotation: A post-hoc analysis of a phase III randomized trial of MRI-guided versus CT-guided stereotactic body radiotherapy. Radiother. Oncol. 2022;167:203–210. doi: 10.1016/j.radonc.2021.12.037. PubMed DOI
Ferini G., Zagardo V., Valenti V., Aiello D., Federico M., Fazio I., Harikar M.M., Marchese V.A., Illari S.I., Viola A., et al. Towards Personalization of Planning Target Volume Margins Fitted to the Abdominal Adiposity in Localized Prostate Cancer Patients Receiving Definitive or Adjuvant/Salvage Radiotherapy: Suggestive Data from an ExacTrac vs. CBCT Comparison. Anticancer Res. 2023;43:4077–4088. doi: 10.21873/anticanres.16597. PubMed DOI
Royama T. Analytical Population Dynamics. Volume 10 Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.
Mir Y., Dubeau F. Linear and logistic models with time dependent coefficients. Electron. J. Differ. Equ. 2016;2016:1–17.
Foley P. Predicting extinction times from environmental stochasticity and carrying capacity. Conserv. Biol. 1994;8:124–137. doi: 10.1046/j.1523-1739.1994.08010124.x. DOI
Anderson C., Jovanoski Z., Towers I., Sidhu H. A simple population model with a stochastic carrying capacity; Proceedings of the 21st International Congress on Modelling and Simulation; Gold Coast, Australia. 29 November–4 December 2015;
Lanteri D., Carco D., Castorina P., Ceccarelli M., Cacopardo B. Containment effort reduction and regrowth patterns of the COVID-19 spreading. Infect. Dis. Model. 2021;6:632–642. doi: 10.1016/j.idm.2021.02.003. PubMed DOI PMC
Liu M., Deng M. Permanence and extinction of a stochastic hybrid model for tumor growth. Appl. Math. Lett. 2019;94:66–72. doi: 10.1016/j.aml.2019.02.016. DOI
Enderling H., Chaplain A.J. Mathematical modeling of tumor growth and treatment. Curr. Pharm. Des. 2013;20:4934–4940. doi: 10.2174/1381612819666131125150434. PubMed DOI
Puglisi C., Giuffrida R., Borzì G., Illari S., Caronia F., Di Mattia P., Colarossi C., Ferini G., Martorana E., Sette G., et al. Ex Vivo Irradiation of Lung Cancer Stem Cells Identifies the Lowest Therapeutic Dose Needed for Tumor Growth Arrest and Mass Reduction In Vivo. Front. Oncol. 2022;12:837400. doi: 10.3389/fonc.2022.837400. PubMed DOI PMC
Gompertz B. XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philos. Trans. R. Soc. Lond. 1825;115:513–583. PubMed PMC
Norton L. A Gompertzian model of human breast cancer growth. Cancer Res. 1988;48:7067–7071. PubMed
Vaghi C., Rodallec A., Fanciullino R., Ciccolini J., Mochel J.P., Mastri M., Poignard C., Ebos J.M.L., Benzekry S. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 2020;16:e1007178. doi: 10.1371/journal.pcbi.1007178. PubMed DOI PMC
Castorina P., Carco’ D. Nutrient supply, cell spatial correlation and Gompertzian tumor growth. Theory Biosci. 2021;140:197–203. doi: 10.1007/s12064-021-00344-8. PubMed DOI PMC
Norton L., Simon R. Tumor size, sensitivity to therapy and the design of treatment protocols. Cancer Treat. Rep. 1976;61:1307–1317. PubMed
Wheldon T.E. Mathematical Models in Cancer Research. Taylor & Francis; Oxfordshire, UK: 1988.
Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M., Brito I., Hupé P., Bourhis J., et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014;6:245ra93. doi: 10.1126/scitranslmed.3008973. PubMed DOI
Stein A., Wang W., Carter A.A., Chiparus O., Hollaender N., Kim H., Motzer R.J., Sarr C. Dynamic tumor modeling of the dose–response relationship for everolimus in metastatic renal cell carcinoma using data from the phase 3 RECORD-1 trial. BMC Cancer. 2012;12:311. doi: 10.1186/1471-2407-12-311. PubMed DOI PMC
de Faria Bessa J., Marta G.N. Triple-negative breast cancer and radiation therapy. Rep. Pract. Oncol. Radiother. 2022;27:545–551. PubMed PMC
Rahman M., Trigilio A., Franciosini G., Moeckli R., Zhang R., Böhlen T.T. FLASH radiotherapy treatment planning and models for electron beams. Radiother. Oncol. 2022;175:210–221. doi: 10.1016/j.radonc.2022.08.009. PubMed DOI
Lowe D., Roy L., Tabocchini M.A., Rühm W., Wakeford R., Woloschak G.E., Laurier D. Radiation dose rate effects: What is new and what is needed? Radiat. Environ. Biophys. 2022;61:507–543. doi: 10.1007/s00411-022-00996-0. PubMed DOI PMC
Omyan G., Musa A.E., Shabeeb D., Akbardoost N., Gholami S. Efficacy and toxicity of FLASH radiotherapy: A systematic review. J. Cancer Res. Ther. 2020;16:1203–1209. PubMed
Bourhis J., Montay-Gruel P., Gonçalves Jorge P., Bailat C., Petit B., Ollivier J., Jeanneret-Sozzi W., Ozsahin M., Bochud F., Moeckli R., et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019;139:11–17. doi: 10.1016/j.radonc.2019.04.008. PubMed DOI
Zhang Z., Liu X., Chen D., Yu J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct. Target. Ther. 2022;7:258. doi: 10.1038/s41392-022-01102-y. PubMed DOI PMC
Van den Begin R., Kleijnen J.P., Engels B., Philippens M., van Asselen B., Raaymakers B., Reerink O., Ridder M.D., Intven M. Tumor volume regression during preoperative chemoradiotherapy for rectal cancer: A prospective observational study with weekly MRI. Acta Oncol. 2018;57:723–727. doi: 10.1080/0284186X.2017.1400689. PubMed DOI
Sarapata E.A., De Pillis L. A comparison and catalog of intrinsic tumor growth models. Bull. Math. Biol. 2014;76:2010–2024. doi: 10.1007/s11538-014-9986-y. PubMed DOI
Hu A., Zhou W., Qiu R., Li J. Mathematical analysis of FLASH effect models based on theoretical hypotheses. Phys. Med. Biol. 2024;69 doi: 10.1088/1361-6560/ad612a. PubMed DOI
Zahid M.U., Mohsin N., Mohamed A.S.R., Caudell J.J., Harrison L.B., Fuller C.D., Moros E.G., Enderling H. Forecasting Individual Patient Response to Radiation Therapy in Head and Neck Cancer With a Dynamic Carrying Capacity Model. Int. J. Radiat. Oncol. Biol. Phys. 2021;111:693–704. doi: 10.1016/j.ijrobp.2021.05.132. PubMed DOI PMC
Bourhis J., Sozzi W.J., Jorge P.G., Gaide O., Bailat C., Duclos F., Patin D., Ozsahin M., Bochud F., Germond J.-F., et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 2019;139:18–22. doi: 10.1016/j.radonc.2019.06.019. PubMed DOI
Mascia A.E., Daugherty E.C., Zhang Y., Lee E., Xiao Z., Sertorio M., Woo J., Backus L.R., McDonald J.M., McCann C., et al. Proton FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases: The FAST-01 Nonrandomized Trial. JAMA Oncol. 2023;9:62–69. doi: 10.1001/jamaoncol.2022.5843. PubMed DOI PMC
Liu J., Hormuth D.A., Davis T. A time-resolved experimental–mathematical model for predicting the response of glioma cells to single-dose radiation therapy. Integr. Biol. 2021;13:167–183. doi: 10.1093/intbio/zyab010. PubMed DOI PMC