Forecasting Individual Patients' Best Time for Surgery in Colon-Rectal Cancer by Tumor Regression during and after Neoadjuvant Radiochemotherapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
89J18000700007
Regione Siciliana
PubMed
37241020
PubMed Central
PMC10220791
DOI
10.3390/jpm13050851
PII: jpm13050851
Knihovny.cz E-zdroje
- Klíčová slova
- mathematical model, neoadjuvant radiotherapy, response prediction,
- Publikační typ
- časopisecké články MeSH
The standard treatment of locally advanced rectal cancer is neoadjuvant chemoradiotherapy before surgery. For those patients experiencing a complete clinical response after the treatment, a watch-and-wait strategy with close monitoring may be practicable. In this respect, the identification of biomarkers of the response to therapy is extremely important. Many mathematical models have been developed or used to describe tumor growth, such as Gompertz's Law and the Logistic Law. Here we show that the parameters of those macroscopic growth laws, obtained by fitting the tumor evolution during and immediately after therapy, are a useful tool for evaluating the best time for surgery in this type of cancer. A limited number of experimental observations of the tumor volume regression, during and after the neoadjuvant doses, permits a reliable evaluation of a specific patient response (partial or complete recovery) for a later time, and one can evaluate a modification of the scheduled treatment, following a watch-and-wait approach or an early or late surgery. Neoadjuvant chemoradiotherapy effects can be quantitatively described by applying Gompertz's Law and the Logistic Law to estimate tumor growth by monitoring patients at regular intervals. We show a quantitative difference in macroscopic parameters between partial and complete response patients, reliable for estimating the treatment effects and best time for surgery.
Faculty of Mathematics and Physics Charles University 5 Holešovičkách 2 18000 Prague Czech Republic
Istituto Nazionale di Fisica Nucleare Sezione di Catania 95123 Catania Italy
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R., Torre L., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Glynne-Jones R., Wyrwicz L., Tiret E., Brown G., Rödel C., Cervantes A., Arnold D., ESMO Guidelines Committee Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013;24:iv22–iv40. doi: 10.1093/annonc/mdx224. PubMed DOI
Baxter N.N., Morris A.M., Rothenberger D.A., Tepper J.E. Impact of preoperative radiation for rectal cancer on subsequent lymph node evaluation: A population-based analysis. Int. J. Radiat. Oncol. Biol. Phys. 2005;61:426–431. PubMed
Ha Y.H., Jeong S.-Y., Lim S.-B., Choi H.S., Hong Y.S., Chang H.J., Kim D.Y., Jung K.H., Park J.G. Influence of preoperative chemoradiotherapy on the number of lymph nodes retrieved in rectal cancer. Ann. Surg. 2010;252:336–340. doi: 10.1097/SLA.0b013e3181e61e33. PubMed DOI
Heald R., Husband E., Ryall R. The mesorectum in rectal cancer surgery—The clue to pelvic recurrence? J. Br. Surg. 1982;69:613–616. PubMed
Cunningham D., Atkin W., Lenz H., Lynch H., Minsky B., Nordlinger B., Starling N. Colorectal cancer. Lancet. 2010;375:1030–1047. doi: 10.1016/S0140-6736(10)60353-4. PubMed DOI
Chen T.Y.-T., Wiltink L.M., Nout R.A., Kranenbarg E.M.-K., Laurberg S., Marijnen C.A.M., van de Velde C.J.H. Bowel function 14 years after preoperative short-course radiotherapy and total mesorectal excision for rectal cancer: Report of a multicenter randomized trial. Clin Color. Cancer. 2015;14:106–114. doi: 10.1016/j.clcc.2014.12.007. PubMed DOI
Benson A.B., Venook A.P., Al-Hawary M.M., Azad N., Chen Y.J., Ciombor K.K., Cohen S., Cooper H.S., Deming D., Garrido-Laguna I., et al. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022;20:1139–1167. doi: 10.6004/jnccn.2022.0051. PubMed DOI
Smith J.J., Chow O.S., Gollub M.J., Nash G.M., Temple L.K., Weiser M.R., Guillem J.G., Paty P.B., Avila K., Garcia-Aguilar J., et al. Organ Preservation in Rectal Adenocarcinoma: A phase II randomized controlled trial evaluating 3-year disease-free survival in patients with locally advanced rectal cancer treated with chemoradiation plus induction or consolidation chemotherapy, and total mesorectal excision or nonoperative management. BMC Cancer. 2015;15:767. PubMed PMC
McCarthy K., Pearson K., Fulton R., J H. Pre-operative chemoradiation for non-metastatic locally advanced rectal cancer. Cochrane Database Syst. Rev. 2012;12:CD008368. doi: 10.1002/14651858.CD008368.pub2. PubMed DOI PMC
Peeters K.C., Marijnen C.A., Nagtegaal I.D., Kranenbarg E.K., Putter H., Wiggers T., Rutten H., Pahlman L., Glimelius B., Leer J.W., et al. The TME trial after a median follow-up of 6 years: Increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann. Surg. 2007;246:693–701. doi: 10.1097/01.sla.0000257358.56863.ce. PubMed DOI
Kapiteijn E., Marijnen C.A., Nagtegaal I.D., Putter H., Steup W.H., Wiggers T., Rutten H.J., Pahlman L., Glimelius B., Van Krieken J.H.J., et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 2001;345:638–646. doi: 10.1056/NEJMoa010580. PubMed DOI
Bosset J.F., Collette L., Calais G., Mineur L., Maingon P., Radosevic-Jelic L., Daban A., Bardet E., Beny A., Ollier J.C. Chemotherapy with preoperative radiotherapy in rectal cancer. N. Engl. J. Med. 2006;355:1114–1123. doi: 10.1056/NEJMoa060829. PubMed DOI
Hofheinz R.D., Wenz F., Post S., Matzdorff A., Laechelt S., Hartmann J.T., Müller L., Link H., Moehler M., Kettner E., et al. Chemoradiotherapy with capecitabine versus fluorouracil for locally advanced rectal cancer: A randomised, multicentre, non-inferiority, phase 3 trial. Lancet Oncol. 2012;13:579–588. doi: 10.1016/S1470-2045(12)70116-X. PubMed DOI
Song C., Chung J.H., Kang S.B., Kim D.W., Oh H.K., Lee H.S., Kim J.W., Lee K.W., Kim J.H., Kim J.S. Impact of tumor regression grade as a major prognostic factor in locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A proposal for a modified staging system. Cancers. 2018;10:319. doi: 10.3390/cancers10090319. PubMed DOI PMC
Li Y.H., Li J.L., Zhu X.G., He J.Y., Lin L.M., Lin X.Y., Tang L.R., Cai Y. Associations of tumor regression grade with outcomes in patients with locally advanced rectal cancer treated with preoperative two-week course of radiotherapy. Oncotarget. 2017;8:100165. doi: 10.18632/oncotarget.22118. PubMed DOI PMC
Vecchio F.M., Valentini V., Minsky B.D., Padula G.D., Venkatraman E.S., Balducci M., Miccichè F., Ricci R., Morganti A.G., Gambacorta M.A., et al. The relationship of pathologic tumor regression grade (TRG) and outcomes after preoperative therapy in rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2005;62:752–760. doi: 10.1016/j.ijrobp.2004.11.017. PubMed DOI
Lee S., Oh S.Y., Kim S.H., Lee J.H., Kim M.C., Kim K.H., Kim H.J. Prognostic significance of neutrophil lymphocyte ratio and platelet lymphocyte ratio in advanced gastric cancer patients treated with FOLFOX chemotherapy. BMC Cancer. 2013;13:350. doi: 10.1186/1471-2407-13-350. PubMed DOI PMC
Portale G., Cavallin F., Valdegamberi A., Frigo F., Fiscon V. Platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio are not prognostic biomarkers in rectal cancer patients with curative resection. J. Gastrointest. Surg. 2018;22:1611–1618. doi: 10.1007/s11605-018-3781-2. PubMed DOI
Kim T.G., Park W., Kim H., Choi D.H., Park H.C., Kim S.H., Cho Y.B., Yun S.H., Kim H.C., Lee W.Y., et al. Baseline neutrophil–lymphocyte ratio and platelet–lymphocyte ratio in rectal cancer patients following neoadjuvant chemoradiotherapy. Tumori J. 2019;105:434–440. doi: 10.1177/0300891618792476. PubMed DOI
Hartley A., Ho K., McConkey C., Geh J. Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: Analysis of phase II/III trials. Br. J. Radiol. 2005;78:934–938. doi: 10.1259/bjr/86650067. PubMed DOI
Appelt A., Pløen J., Harling H., Jensen F., Jensen L., Jørgensen J., Lindebjerg J., Rafaelsen S., Jakobsen A. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: A prospective observational study. Lancet Oncol. 2015;16:919–927. doi: 10.1016/S1470-2045(15)00120-5. PubMed DOI
Glimelius B. Optimal Time Intervals between Pre-Operative Radiotherapy or Chemoradiotherapy and Surgery in Rectal Cancer? Front. Oncol. 2014;4:50. doi: 10.3389/fonc.2014.00050. PubMed DOI PMC
Huang C.W., Su W.C., Yin T.C., Chen P.J., Chang T.K., Chen Y.C., Li C.C., Hsieh Y.C., Tsai H.L., Wang J.Y. Time interval between the completion of radiotherapy and robotic-assisted surgery among patients with stage I–III rectal cancer undergoing preoperative chemoradiotherapy. PLoS ONE. 2020;15:e0240742. doi: 10.1371/journal.pone.0240742. PubMed DOI PMC
Lichthardt S., Wagner J., Löb S., Matthes N., Kastner C., Anger F., Germer C.T., Wiegering A. Pathological complete response due to a prolonged time interval between preoperative chemoradiation and surgery in locally advanced rectal cancer: Analysis from the German StuDoQ| Rectalcarcinoma registry. BMC Cancer. 2020;20:49. doi: 10.1186/s12885-020-6538-8. PubMed DOI PMC
Ferini G., Valenti V., Tripoli A., Illari S., Molino L., Parisi S., Cacciola A., Lillo S., Giuffrida D., Pergolizzi S. Lattice or oxygen-guided radiotherapy: What if they converge? Possible future directions in the era of immunotherapy. Cancers. 2021;13:3290. doi: 10.3390/cancers13133290. PubMed DOI PMC
Ferini G., Castorina P., Valenti V., Illari S., Sachpazidis I., Castorina L., Marrale M., Pergolizzi S. A Novel Radiotherapeutic Approach to Treat Bulky Metastases Even From Cutaneous Squamous Cell Carcinoma: Its Rationale and a Look at the Reliability of the Linear-Quadratic Model to Explain Its Radiobiological Effects. Front. Oncol. 2022;12:809279. doi: 10.3389/fonc.2022.809279. PubMed DOI PMC
Dzutsev A., Goldszmid R.S., Viaud S., Zitvogel L., Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur. J. Immunol. 2015;45:17–31. doi: 10.1002/eji.201444972. PubMed DOI
Castorina P., Castorina L., Ferini G. Non-Homogeneous Tumor Growth and Its Implications for Radiotherapy: A Phenomenological Approach. J. Pers. Med. 2021;11:527. doi: 10.3390/jpm11060527. PubMed DOI PMC
SJ M. The linear quadratic model: Usage, interpretation and challenges. Phys Med Biol. 2018;64:01TR01. PubMed
Castorina P., Ferini G., Martorana E., Forte S. Tumor volume regression during and after radiochemotherapy: A macroscopic description. J. Pers. Med. 2022;12:530. doi: 10.3390/jpm12040530. PubMed DOI PMC
Gompertz B. On the nature of the function expressive of the law of human mortality and a new mode of determining life contingencies. Philos. Trans. R. Soc. 1825;115:513–583. PubMed PMC
Royama T. Analytical Population Dynamics. Volume 10 Springer Science & Business Media; Berlin, Germany: 2012.
Meyer P.S., Ausubel J.H. Carrying Capacity: A Model with Logistically Varying Limits. Technol. Forecast. Soc. Chang. 1999;61:209–214. doi: 10.1016/S0040-1625(99)00022-0. DOI
Wheldon T. Mathematical Model in Cancer Research. Adam Hilger; Bristol, UK: 1988.
Van den Begin R., Kleijnen J.P., Engels B., Philippens M., Asselen B., Raaymakers B., Reerink O., Ridder M., Intven M. Tumor volume regression during preoperative chemoradiotherapy for rectal cancer: A prospective observational study with weekly MRI. Acta Oncol. 2018;57:723–727. doi: 10.1080/0284186X.2017.1400689. PubMed DOI
Bostel T., Dreher C., Wollschläger D., Mayer A., König F., Bickelhaupt S., Schlemmer H., Huber P., Sterzing F., Bäumer P., et al. Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily T2- and diffusion-weighted MRI. Radiat. Oncol. 2020;15:171. doi: 10.1186/s13014-020-01613-4. PubMed DOI PMC
Mathur P., Smith J.J., Ramsey C., Owen M., Thorpe A., Karim S., Burke C., Ramesh S., Dawson P.M. Comparison of CT and MRI in the pre-operative staging of rectal adenocarcinoma and prediction of circumferential resection margin involvement by MRI. Color. Dis. 2003;5:396–401. doi: 10.1046/j.1463-1318.2003.00537.x. PubMed DOI
Castorina P., Carco’ D. Nutrient supply, cell spatial correlation and Gompertzian tumor growth. Theory Biosci. 2021;140:197–203. doi: 10.1007/s12064-021-00344-8. PubMed DOI PMC
Vaghi C., Rodallec A., Fanciullino R., Ciccolini J., Mochel J.P., Mastri M., Benzekry S. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 2020;16:e1007178. doi: 10.1371/journal.pcbi.1007178. PubMed DOI PMC
Parisi S., Ferini G., Cacciola A., Lillo S., Tamburella C., Santacaterina A., Bottari A., Brogna A., Ferrantelli G., Pontoriero A., et al. A non-surgical COMBO-therapy approach for locally advanced unresectable pancreatic adenocarcinoma: Preliminary results of a prospective study. La Radiol. Med. 2022;127:214–219. doi: 10.1007/s11547-021-01441-w. PubMed DOI
Vadalà R., Santacaterina A., Sindoni A., Platania A., Arcudi A., Ferini G., Mazzei M., Marletta D., Rifatto C., Risoleti E., et al. Stereotactic body radiotherapy in non-operable lung cancer patients. Clin. Transl. Oncol. 2016;18:1158–1159. doi: 10.1007/s12094-016-1552-7. PubMed DOI
Quantitative Method for Monitoring Tumor Evolution During and After Therapy