Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
vega 1/0136/19
the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
LISPER Nr. 313011V446
European Association for Predictive, Preventive and Personalised Medicine
NPRP11S-1214-170101
the Qatar National Research Fund (QNRF), Doha, Qatar.
PubMed
34208645
PubMed Central
PMC8234897
DOI
10.3390/cancers13123018
PII: cancers13123018
Knihovny.cz E-zdroje
- Klíčová slova
- Warburg effect, anti-depressant, anti-inflammatory, anti-tumor, antioxidant, cancer, melatonin, metabolism, mitochondrial dysfunction, predictive preventive personalized medicine (PPPM/3PM),
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.
Biomedical Research Centre Slovak Academy of Sciences 81439 Bratislava Slovakia
Department of Pathology St Elizabeth Cancer Institute Hospital 81250 Bratislava Slovakia
European Association for Predictive Preventive and Personalised Medicine EPMA 1160 Brussels Belgium
Museum of Literature in Moravia Klašter 1 66461 Rajhrad Czech Republic
Zobrazit více v PubMed
Allison K.E., Coomber B.L., Bridle B.W. Metabolic reprogramming in the tumour microenvironment: A hallmark shared by cancer cells and t lymphocytes. Immunology. 2017;152:175–184. doi: 10.1111/imm.12777. PubMed DOI PMC
Sun X., Wang M., Wang M., Yu X., Guo J., Sun T., Li X., Yao L., Dong H., Xu Y. Metabolic reprogramming in triple-negative breast cancer. Front. Oncol. 2020;10:428. doi: 10.3389/fonc.2020.00428. PubMed DOI PMC
Giannattasio S., Mirisola M.G., Mazzoni C. Editorial: Cell stress, metabolic reprogramming, and cancer. Front. Oncol. 2018;8:236. doi: 10.3389/fonc.2018.00236. PubMed DOI PMC
Phan L.M., Yeung S.-C.J., Lee M.-H. Cancer metabolic reprogramming: Importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 2014;11:1–19. doi: 10.7497/j.issn.2095-3941.2014.01.001. PubMed DOI PMC
Mayo J.C., Cernuda R., Quiros I., Rodriguez P., Garcia J.I., Hevia D., Sainz R.M. Understanding the role of melatonin in cancer metabolism. Melatonin Res. 2019;2:76–104. doi: 10.32794/11250032. DOI
Hansen M.V., Andersen L.T., Madsen M.T., Hageman I., Rasmussen L.S., Bokmand S., Rosenberg J., Gögenur I. Effect of melatonin on depressive symptoms and anxiety in patients undergoing breast cancer surgery: A randomized, double-blind, placebo-controlled trial. Breast Cancer Res. Treat. 2014;145:683–695. doi: 10.1007/s10549-014-2962-2. PubMed DOI
Kostoglou-Athanassiou I. Therapeutic applications of melatonin. Ther. Adv. Endocrinol. Metab. 2013;4:13–24. doi: 10.1177/2042018813476084. PubMed DOI PMC
Li Y., Li S., Zhou Y., Meng X., Zhang J.-J., Xu D.-P., Li H.-B. Melatonin for the prevention and treatment of cancer. Oncotarget. 2017;8:39896–39921. doi: 10.18632/oncotarget.16379. PubMed DOI PMC
Mociková-Kalická K., Bojková B., Adámeková E., Mníchová-Chamilová M., Kubatka P., Ahlersová E., Ahlers I. Preventive effect of indomethacin and melatonin on 7,12-dimethybenz/a/anthracene-induced mammary carcinogenesis in female sprague-dawley rats. A preliminary report. Folia Biol. 2001;47:75–79. PubMed
Orendáš P., Kubatka P., Bojková B., Kassayová M., Kajo K., Výbohová D., Kružliak P., Péč M., Adamkov M., Kapinová A., et al. Melatonin potentiates the anti-tumour effect of pravastatin in rat mammary gland carcinoma model. Int. J. Exp. Pathol. 2014;95:401–410. doi: 10.1111/iep.12094. PubMed DOI PMC
Bojková B., Kubatka P., Qaradakhi T., Zulli A., Kajo K. Melatonin may increase anticancer potential of pleiotropic drugs. Int. J. Mol. Sci. 2018;19:3910. doi: 10.3390/ijms19123910. PubMed DOI PMC
Reiter R.J., Sharma R., Rosales-Corral S. Anti-warburg effect of melatonin: A proposed mechanism to explain its inhibition of multiple diseases. Int. J. Mol. Sci. 2021;22:764. doi: 10.3390/ijms22020764. PubMed DOI PMC
Kubatka P., Zubor P., Busselberg D., Kwon T.K., Adamek M., Petrovic D., Opatrilova R., Gazdikova K., Caprnda M., Rodrigo L., et al. Melatonin and breast cancer: Evidences from preclinical and human studies. Crit. Rev. Oncol. Hematol. 2018;122:133–143. doi: 10.1016/j.critrevonc.2017.12.018. PubMed DOI
Zhao Y., Ren J., Hillier J., Jones M., Lu W., Jones E.Y. Structural characterization of melatonin as an inhibitor of the wnt deacylase notum. J. Pineal. Res. 2020;68:e12630. doi: 10.1111/jpi.12630. PubMed DOI PMC
Rani P., Pal D., Hegde R.R., Hashim S.R. Acetamides: Chemotherapeutic agents for inflammation-associated cancers. J. Chemother. 2016;28:255–265. doi: 10.1179/1973947815Y.0000000060. PubMed DOI
Tordjman S., Chokron S., Delorme R., Charrier A., Bellissant E., Jaafari N., Fougerou C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 2017;15:434–443. doi: 10.2174/1570159X14666161228122115. PubMed DOI PMC
Zhao D., Yu Y., Shen Y., Liu Q., Zhao Z., Sharma R., Reiter R.J. Melatonin synthesis and function: Evolutionary history in animals and plants. Front. Endocrinol. 2019;10:249. doi: 10.3389/fendo.2019.00249. PubMed DOI PMC
Saha S., Singh K.M., Gupta B.B.P. Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences. Gen. Comp. Endocrinol. 2019;279:27–34. doi: 10.1016/j.ygcen.2018.07.010. PubMed DOI
Benyassi A., Schwartz C., Coon S.L., Klein D.C., Falcón J. Melatonin synthesis: Arylalkylamine N-acetyltransferases in trout retina and pineal organ are different. Neuroreport. 2000;11:255–258. doi: 10.1097/00001756-200002070-00006. PubMed DOI
Low M.J. Neuroendocrinology. In: Melmed S., Polonsky K.S., Larsen P.R., Kronenberg H.M., editors. Williams Textbook of Endocrinology. 13th ed. Elsevier; Philadelphia, PA, USA: 2016. pp. 109–175.
Cook J.S., Sauder C.L., Ray C.A. Melatonin differentially affects vascular blood flow in humans. Am. J. Physiol. Heart Circ. Physiol. 2011;300:H670–H674. doi: 10.1152/ajpheart.00710.2010. PubMed DOI PMC
Reiter R.J. Circadian and non-circadian melatonin: Influences on glucose metabolism in cancer cells. J. Curr. Sci. Technol. 2020;10:85–98. doi: 10.14456/JCST.2020.9. DOI
Hardeland R. Chronobiology of melatonin beyond the feedback to the suprachiasmatic nucleus—Consequences to melatonin dysfunction. Int. J. Mol. Sci. 2013;14:5817–5841. doi: 10.3390/ijms14035817. PubMed DOI PMC
Dubocovich M.L. Melatonin receptors: Role on sleep and circadian rhythm regulation. Sleep Med. 2007;8(Suppl. S3):34–42. doi: 10.1016/j.sleep.2007.10.007. PubMed DOI
Poza J.J., Pujol M., Ortega-Albás J.J., Romero O. Melatonin in sleep disorders. Neurología. 2020 doi: 10.1016/j.nrleng.2018.08.004. PubMed DOI
Ashrafizadeh M., Najafi M., Kavyiani N., Mohammadinejad R., Farkhondeh T., Samarghandian S. Anti-inflammatory activity of melatonin: A focus on the role of NLRP3 inflammasome. Inflammation. 2021 doi: 10.1007/s10753-021-01428-9. PubMed DOI
Karaaslan C., Suzen S. Antioxidant properties of melatonin and its potential action in diseases. Curr. Top Med. Chem. 2015;15:894–903. doi: 10.2174/1568026615666150220120946. PubMed DOI
Ahmadi Z., Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol. 2020;34:11–19. doi: 10.1111/fcp.12498. PubMed DOI
Abadi S.H.M.H., Shirazi A., Alizadeh A.M., Changizi V., Najafi M., Khalighfard S., Nosrati H. The effect of melatonin on superoxide dismutase and glutathione peroxidase activity, and malondialdehyde levels in the targeted and the non-targeted lung and heart tissues after irradiation in xenograft mice colon cancer. Curr. Mol. Pharmacol. 2018;11:326–335. doi: 10.2174/1874467211666180830150154. PubMed DOI
Pohanka M. Impact of melatonin on immunity: A review. Cent. Eur. J. Med. 2013;8:369–376. doi: 10.2478/s11536-013-0177-2. DOI
Maestroni G.J.M. Melatonin and the immune system therapeutic potential in cancer, viral diseases, and immunodeficiency states. In: Bartsch C., Bartsch H., Blask D.E., Cardinali D.P., Hrushesky W.J.M., Mecke D., editors. The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer; Berlin/Heidelberg, Germany: 2001. pp. 384–394.
Miller S.C., Pandi P.S.R., Esquifino A.I., Cardinali D.P., Maestroni G.J.M. The role of melatonin in immuno-enhancement: Potential application in cancer. Int. J. Exp. Pathol. 2006;87:81–87. doi: 10.1111/j.0959-9673.2006.00474.x. PubMed DOI PMC
Campos L.A., Bueno C., Barcelos I.P., Halpern B., Brito L.C., Amaral F.G., Baltatu O.C., Cipolla-Neto J. Melatonin therapy improves cardiac autonomic modulation in pinealectomized patients. Front. Endocrinol. 2020;11:239. doi: 10.3389/fendo.2020.00239. PubMed DOI PMC
Wang Y., Wang P., Zheng X., Du X. Therapeutic strategies of melatonin in cancer patients: A systematic review and meta-analysis. OncoTargets Ther. 2018;11:7895–7908. doi: 10.2147/OTT.S174100. PubMed DOI PMC
Di Bella G., Mascia F., Gualano L., Di Bella L. Melatonin anticancer effects: Review. Int. J. Mol. Sci. 2013;14:2410–2430. doi: 10.3390/ijms14022410. PubMed DOI PMC
Wang T., Liu B., Guan Y., Gong M., Zhang W., Pan J., Liu Y., Liang R., Yuan Y., Ye L. Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol a via targeting estrogen receptor-related pathways. Thorac. Cancer. 2018;9:368–375. doi: 10.1111/1759-7714.12587. PubMed DOI PMC
Hill S.M., Frasch T., Xiang S., Yuan L., Duplessis T., Mao L. Molecular mechanisms of melatonin anticancer effects. Integr. Cancer Ther. 2009;8:337–346. doi: 10.1177/1534735409353332. PubMed DOI
Rodriguez C., Martín V., Herrera F., García-Santos G., Rodriguez-Blanco J., Casado-Zapico S., Sánchez-Sánchez A.M., Suárez S., Puente-Moncada N., Anítua M.J., et al. Mechanisms involved in the pro-apoptotic effect of melatonin in cancer cells. Int. J. Mol. Sci. 2013;14:6597–6613. doi: 10.3390/ijms14046597. PubMed DOI PMC
Moretti R.M., Marelli M.M., Maggi R., Dondi D., Motta M., Limonta P. Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol. Rep. 2000;7:347–351. doi: 10.3892/or.7.2.347. PubMed DOI
Gatti G., Lucini V., Dugnani S., Calastretti A., Spadoni G., Bedini A., Rivara S., Mor M., Canti G., Scaglione F., et al. Antiproliferative and pro-apoptotic activity of melatonin analogues on melanoma and breast cancer cells. Oncotarget. 2017;8:68338–68353. doi: 10.18632/oncotarget.20124. PubMed DOI PMC
Cheng J., Yang H.-L., Gu C.-J., Liu Y.-K., Shao J., Zhu R., He Y.-Y., Zhu X.-Y., Li M.-Q. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int. J. Mol. Med. 2019;43:945–955. doi: 10.3892/ijmm.2018.4021. PubMed DOI PMC
Mortezaee K., Potes Y., Mirtavoos-Mahyari H., Motevaseli E., Shabeeb D., Musa A.E., Najafi M., Farhood B. Boosting immune system against cancer by melatonin: A mechanistic viewpoint. Life Sci. 2019;238:116960. doi: 10.1016/j.lfs.2019.116960. PubMed DOI
Tang Z., Xu Z., Zhu X., Zhang J. New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Commun. 2021;41:16–36. doi: 10.1002/cac2.12112. PubMed DOI PMC
Samec M., Liskova A., Koklesova L., Samuel S.M., Zhai K., Buhrmann C., Varghese E., Abotaleb M., Qaradakhi T., Zulli A., et al. Flavonoids against the warburg phenotype—Concepts of predictive, preventive and personalised medicine to cut the gordian knot of cancer cell metabolism. EPMA J. 2020;11:377–398. doi: 10.1007/s13167-020-00217-y. PubMed DOI PMC
Koklesova L., Samec M., Liskova A., Zhai K., Büsselberg D., Giordano F.A., Kubatka P., Golunitschaja O. Mitochondrial impairments in aetiopathology of multifactorial diseases: Common origin but individual outcomes in context of 3P medicine. EPMA J. 2021:1–14. doi: 10.1007/s13167-021-00237-2. PubMed DOI PMC
Yu L., Chen X., Wang L., Chen S. The sweet trap in tumors: Aerobic glycolysis and potential targets for therapy. Oncotarget. 2016;7:38908–38926. doi: 10.18632/oncotarget.7676. PubMed DOI PMC
Kuo M.-H., Chang W.-W., Yeh B.-W., Chu Y.-S., Lee Y.-C., Lee H.-T. Glucose transporter 3 is essential for the survival of breast cancer cells in the brain. Cells. 2019;8:1568. doi: 10.3390/cells8121568. PubMed DOI PMC
Hussein Y.R., Bandyopadhyay S., Semaan A., Ahmed Q., Albashiti B., Jazaerly T., Nahleh Z., Ali-Fehmi R. Glut-1 expression correlates with basal-like breast cancer. Transl. Oncol. 2011;4:321–327. doi: 10.1593/tlo.11256. PubMed DOI PMC
Gonzalez-Menendez P., Hevia D., Alonso-Arias R., Alvarez-Artime A., Rodriguez-Garcia A., Kinet S., Gonzalez-Pola I., Taylor N., Mayo J.C., Sainz R.M. GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol. 2018;17:112–127. doi: 10.1016/j.redox.2018.03.017. PubMed DOI PMC
Ayala F.R.R., Rocha R.M., Carvalho K.C., Carvalho A.L., da Cunha I.W., Lourenço S.V., Soares F.A. Glut1 and Glut3 as potential prognostic markers for oral squamous cell carcinoma. Molecules. 2010;15:2374–2387. doi: 10.3390/molecules15042374. PubMed DOI PMC
Chiba I., Ogawa K., Morioka T., Shimoji H., Sunagawa N., Iraha S., Nishimaki T., Yoshimi N., Murayama S. Clinical significance of GLUT-1 expression in patients with esophageal cancer treated with concurrent chemoradiotherapy. Oncol. Lett. 2011;2:21–28. doi: 10.3892/ol.2010.199. PubMed DOI PMC
Feng J., Li J., Wu L., Yu Q., Ji J., Wu J., Dai W., Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2020;39:126. doi: 10.1186/s13046-020-01629-4. PubMed DOI PMC
Feng Y., Xiong Y., Qiao T., Li X., Jia L., Han Y. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018;7:6124–6136. doi: 10.1002/cam4.1820. PubMed DOI PMC
Hsu M.-C., Hung W.-C. Pyruvate kinase M2 fuels multiple aspects of cancer cells: From Cellular metabolism, transcriptional regulation to extracellular signaling. Mol. Cancer. 2018;17:35. doi: 10.1186/s12943-018-0791-3. PubMed DOI PMC
Yi W., Clark P.M., Mason D.E., Keenan M.C., Hill C., Goddard W.A., Peters E.C., Driggers E.M., Hsieh-Wilson L.C. PFK1 glycosylation is a key regulator of cancer cell growth and central metabolic pathways. Science. 2012;337:975–980. doi: 10.1126/science.1222278. PubMed DOI PMC
Yeung S.J., Pan J., Lee M.-H. Roles of P53, Myc and HIF-1 in regulating glycolysis—The seventh hallmark of cancer. Cell. Mol. Life Sci. 2008;65:3981. doi: 10.1007/s00018-008-8224-x. PubMed DOI PMC
Wang Y.-P., Lei Q.-Y. Metabolic recoding of epigenetics in cancer. Cancer Commun. 2018;38:25. doi: 10.1186/s40880-018-0302-3. PubMed DOI PMC
Grasmann G., Smolle E., Olschewski H., Leithner K. Gluconeogenesis in cancer cells—Repurposing of a starvation-induced metabolic pathway? Biochim. Biophys. Acta Rev. Cancer. 2019;1872:24–36. doi: 10.1016/j.bbcan.2019.05.006. PubMed DOI PMC
Engelking L.R. Gluconeogenesis. In: Engelking L.R., editor. Textbook of Veterinary Physiological Chemistry. 3rd ed. Academic Press; Boston, MA, USA: 2015. pp. 225–230.
Wang Z., Dong C. Gluconeogenesis in cancer: Function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer. 2019;5:30–45. doi: 10.1016/j.trecan.2018.11.003. PubMed DOI
Shi L., An S., Liu Y., Liu J., Wang F. PCK1 regulates glycolysis and tumor progression in clear cell renal cell carcinoma through LDHA. OncoTargets Ther. 2020;13:2613–2627. doi: 10.2147/OTT.S241717. PubMed DOI PMC
Yamaguchi N., Weinberg E.M., Nguyen A., Liberti M.V., Goodarzi H., Janjigian Y.Y., Paty P.B., Saltz L.B., Kingham T.P., Loo J.M., et al. PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis. Elife. 2019;8:e52135. doi: 10.7554/eLife.52135. PubMed DOI PMC
Zhao J., Li J., Fan T.W.M., Hou S.X. Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells. Oncotarget. 2017;8:83602–83618. doi: 10.18632/oncotarget.18787. PubMed DOI PMC
Liu G.-M., Zhang Y.-M. Targeting FBPase is an emerging novel approach for cancer therapy. Cancer Cell Int. 2018;18:36. doi: 10.1186/s12935-018-0533-z. PubMed DOI PMC
Dong C., Yuan T., Wu Y., Wang Y., Fan T.W.M., Miriyala S., Lin Y., Yao J., Shi J., Kang T., et al. Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23:316–331. doi: 10.1016/j.ccr.2013.01.022. PubMed DOI PMC
Li B., Qiu B., Lee D.S.M., Walton Z.E., Ochocki J.D., Mathew L.K., Mancuso A., Gade T.P.F., Keith B., Nissim I., et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature. 2014;513:251–255. doi: 10.1038/nature13557. PubMed DOI PMC
Filipp F.V., Scott D.A., Ronai Z.A., Osterman A.L., Smith J.W. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res. 2012;25:375–383. doi: 10.1111/j.1755-148X.2012.00989.x. PubMed DOI PMC
Haddad A., Mohiuddin S.S. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. Biochemistry, citric acid cycle. PubMed
Cardaci S., Ciriolo M.R. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State. [(accessed on 6 February 2021)]; Available online: https://www.hindawi.com/journals/ijcb/2012/161837/ PubMed PMC
King A., Selak M.A., Gottlieb E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene. 2006;25:4675–4682. doi: 10.1038/sj.onc.1209594. PubMed DOI
Tennant D.A., Frezza C., MacKenzie E.D., Nguyen Q.D., Zheng L., Selak M.A., Roberts D.L., Dive C., Watson D.G., Aboagye E.O., et al. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene. 2009;28:4009–4021. doi: 10.1038/onc.2009.250. PubMed DOI
Anderson N.M., Mucka P., Kern J.G., Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9:216–237. doi: 10.1007/s13238-017-0451-1. PubMed DOI PMC
Choi J., Kim E.-S., Koo J.S. Expression of Pentose Phosphate Pathway-Related Proteins in Breast Cancer. [(accessed on 7 February 2021)]; Available online: https://www.hindawi.com/journals/dm/2018/9369358/ PubMed PMC
Cossu V., Bonanomi M., Bauckneht M., Ravera S., Righi N., Miceli A., Morbelli S., Orengo A.M., Piccioli P., Bruno S., et al. Two high-rate pentose-phosphate pathways in cancer cells. Sci. Rep. 2020;10:22111. doi: 10.1038/s41598-020-79185-2. PubMed DOI PMC
Ge T., Yang J., Zhou S., Wang Y., Li Y., Tong X. The role of the pentose phosphate pathway in diabetes and cancer. Front. Endocrinol. 2020;11:365. doi: 10.3389/fendo.2020.00365. PubMed DOI PMC
Stine Z.E., Altman B.J., Hsieh A.L., Gouw A.M., Dang C.V. Deregulation of the cellular energetics of cancer cells. In: McManus L.M., Mitchell R.N., editors. Pathobiology of Human Disease. Academic Press; San Diego, CA, USA: 2014. pp. 444–455.
Jin L., Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol. Lett. 2019;17:4213–4221. doi: 10.3892/ol.2019.10112. PubMed DOI PMC
Berg J.M., Tymoczko J.L., Stryer L. Biochemistry. 5th ed. NCBI; Bethesda, MD, USA: 2002. 20.3 the pentose phosphate pathway generates NADPH and synthesizes five-carbon sugars.
Zhang Q., Yi X., Yang Z., Han Q., Di X., Chen F., Wang Y., Yi Z., Kuang Y., Zhu Y. Overexpression of G6PD represents a potential prognostic factor in clear cell renal cell carcinoma. J. Cancer. 2017;8:665–673. doi: 10.7150/jca.16858. PubMed DOI PMC
Pu H., Zhang Q., Zhao C., Shi L., Wang Y., Wang J., Zhang M. Overexpression of G6PD is associated with high risks of recurrent metastasis and poor progression-free survival in primary breast carcinoma. World J. Surg. Oncol. 2015;13:323. doi: 10.1186/s12957-015-0733-0. PubMed DOI PMC
Yu J., Liang Q., Wang J., Wang K., Gao J., Zhang J., Zeng Y., Chiu P.W.Y., Ng E.K.W., Sung J.J.Y. REC8 Functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene. 2017;36:182–193. doi: 10.1038/onc.2016.187. PubMed DOI PMC
Zhang X., Zhang X., Li Y., Shao Y., Xiao J., Zhu G., Li F. PAK4 regulates G6PD activity by P53 degradation involving colon cancer cell growth. Cell Death Dis. 2017;8:e2820. doi: 10.1038/cddis.2017.85. PubMed DOI PMC
Lu M., Lu L., Dong Q., Yu G., Chen J., Qin L., Wang L., Zhu W., Jia H. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim. Biophy. Sin. 2018;50:370–380. doi: 10.1093/abbs/gmy009. PubMed DOI
Cha Y., Jung W., Koo J. Differential site-based expression of pentose phosphate pathway-related proteins among breast cancer metastases. Dis. Markers. 2017;2017:7062517. doi: 10.1155/2017/7062517. PubMed DOI PMC
Simabuco F.M., Morale M.G., Pavan I.C.B., Morelli A.P., Silva F.R., Tamura R.E. P53 and metabolism: From mechanism to therapeutics. Oncotarget. 2018;9:23780–23823. doi: 10.18632/oncotarget.25267. PubMed DOI PMC
Schwartzenberg-Bar-Yoseph F., Armoni M., Karnieli E. The tumor suppressor P53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64:2627–2633. doi: 10.1158/0008-5472.CAN-03-0846. PubMed DOI
Tsouko E., Khan A.S., White M.A., Han J.J., Shi Y., Merchant F.A., Sharpe M.A., Xin L., Frigo D.E. Regulation of the pentose phosphate pathway by an androgen receptor-MTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis. 2014;3:e103. doi: 10.1038/oncsis.2014.18. PubMed DOI PMC
Wang Y.-Y., Chen J., Liu X.-M., Zhao R., Zhe H. Nrf2-mediated metabolic reprogramming in cancer. Oxid. Med. Cell. Longev. 2018;2018:9304091. doi: 10.1155/2018/9304091. PubMed DOI PMC
Santana-Codina N., Roeth A.A., Zhang Y., Yang A., Mashadova O., Asara J.M., Wang X., Bronson R.T., Lyssiotis C.A., Ying H., et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun. 2018;9:4945. doi: 10.1038/s41467-018-07472-8. PubMed DOI PMC
Varghese E., Samuel S.M., Líšková A., Samec M., Kubatka P., Büsselberg D. Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers. 2020;12:2252. doi: 10.3390/cancers12082252. PubMed DOI PMC
Chen X.-S., Li L.-Y., Guan Y., Yang J.-M., Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: Therapeutic targeting of the warburg effect. Acta Pharmacol. Sin. 2016;37:1013–1019. doi: 10.1038/aps.2016.47. PubMed DOI PMC
Lukey M.J., Katt W.P., Cerione R.A. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today. 2017;22:796–804. doi: 10.1016/j.drudis.2016.12.003. PubMed DOI PMC
Morigny P., Boucher J., Arner P., Langin D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 2021;17:276–295. doi: 10.1038/s41574-021-00471-8. PubMed DOI
Montrose D.C., Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. Int. Rev. Cell Mol. Biol. 2019;347:1–26. doi: 10.1016/bs.ircmb.2019.07.007. PubMed DOI PMC
Cortés-Hernández L.E., Eslami-S Z., Dujon A.M., Giraudeau M., Ujvari B., Thomas F., Alix-Panabières C. Do malignant cells sleep at night? Genome Biol. 2020;21:276. doi: 10.1186/s13059-020-02179-w. PubMed DOI PMC
Blask D.E., Dauchy R.T., Dauchy E.M., Mao L., Hill S.M., Greene M.W., Belancio V.P., Sauer L.A., Davidson L. Light exposure at night disrupts host/cancer circadian regulatory dynamics: Impact on the warburg effect, lipid signaling and tumor growth prevention. PLoS ONE. 2014;9:e102776. doi: 10.1371/journal.pone.0102776. PubMed DOI PMC
Shi L., Tu B.P. Acetyl-CoA and the regulation of metabolism: Mechanisms and consequences. Curr. Opin. Cell Biol. 2015;33:125–131. doi: 10.1016/j.ceb.2015.02.003. PubMed DOI PMC
Nayak M.K., Dhanesha N., Doddapattar P., Rodriguez O., Sonkar V.K., Dayal S., Chauhan A.K. Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis. Blood Adv. 2018;2:2029–2038. doi: 10.1182/bloodadvances.2018022392. PubMed DOI PMC
Reiter R.J., Sharma R., Ma Q., Rosales-Corral S., Acuna-Castroviejo D., Escames G. Inhibition of mitochondrial pyruvate dehydrogenase kinase: A proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Res. 2019;2:105–119. doi: 10.32794/mr11250033. DOI
Lowes D.A., Webster N.R., Murphy M.P., Galley H.F. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br. J. Anaesth. 2013;110:472–480. doi: 10.1093/bja/aes577. PubMed DOI PMC
Reiter R.J., Sharma R., Pires de Campos Zuccari D.A., de Almeida Chuffa L.G., Manucha W., Rodriguez C. Melatonin synthesis in and uptake by mitochondria: Implications for diseased cells with dysfunctional mitochondria. Future Med. Chem. 2021;13:335–339. doi: 10.4155/fmc-2020-0326. PubMed DOI
Reiter R.J., Sharma R., Ma Q., Rorsales-Corral S., de Almeida Chuffa L.G. Melatonin inhibits warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: A mechanistic hypothesis. Cell. Mol. Life Sci. 2020;77:2527–2542. doi: 10.1007/s00018-019-03438-1. PubMed DOI PMC
Hevia D., Gonzalez-Menendez P., Fernandez-Fernandez M., Cueto S., Rodriguez-Gonzalez P., Garcia-Alonso J.I., Mayo J.C., Sainz R.M. Melatonin decreases glucose metabolism in prostate cancer cells: A 13C stable isotope-resolved metabolomic study. Int. J. Mol. Sci. 2017;18:1620. doi: 10.3390/ijms18081620. PubMed DOI PMC
Sanchez-Sanchez A.M., Antolin I., Puente-Moncada N., Suarez S., Gomez-Lobo M., Rodriguez C., Martin V. Melatonin cytotoxicity is associated to warburg effect inhibition in ewing sarcoma cells. PLoS ONE. 2015;10:e0135420. doi: 10.1371/journal.pone.0135420. PubMed DOI PMC
Kim W., Cho Y.S., Wang X., Park O., Ma X., Kim H., Gan W., Jho E., Cha B., Jeung Y., et al. Hippo signaling is intrinsically regulated during cell cycle progression by APC/CCdh1. Proc. Natl. Acad. Sci. USA. 2019;116:9423–9432. doi: 10.1073/pnas.1821370116. PubMed DOI PMC
Lian I., Kim J., Okazawa H., Zhao J., Zhao B., Yu J., Chinnaiyan A., Israel M.A., Goldstein L.S.B., Abujarour R., et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24:1106–1118. doi: 10.1101/gad.1903310. PubMed DOI PMC
Han Y. Analysis of the role of the hippo pathway in cancer. J. Transl. Med. 2019;17:116. doi: 10.1186/s12967-019-1869-4. PubMed DOI PMC
Mi L., Kuang H. Melatonin regulates cisplatin resistance and glucose metabolism through hippo signaling in hepatocellular carcinoma cells. Cancer Manag. Res. 2020;12:1863–1874. doi: 10.2147/CMAR.S230466. PubMed DOI PMC
Zhang H.-M., Zhang Y. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 2014;57:131–146. doi: 10.1111/jpi.12162. PubMed DOI
He M., Zhou C., Lu Y., Mao L., Xi Y., Mei X., Wang X., Zhang L., Yu Z., Zhou Z. Melatonin antagonizes nickel-induced aerobic glycolysis by blocking ROS-mediated HIF-1 α/MiR210/ISCU axis activation. Oxid. Med. Cell. Longev. 2020;2020:5406284. doi: 10.1155/2020/5406284. PubMed DOI PMC
Yunus N.M., Johan M.F., Ali Nagi Al-Jamal H., Husin A., Hussein A.R., Hassan R. Characterisation and clinical significance of FLT3-ITD and Non-ITD in acute myeloid leukaemia patients in Kelantan, northeast peninsular Malaysia. Asian Pac. J. Cancer Prev. 2015;16:4869–4872. doi: 10.7314/APJCP.2015.16.12.4869. PubMed DOI
Puente-Moncada N., Turos-Cabal M., Sánchez-Sánchez A.M., Antolín I., Herrera F., Rodriguez-Blanco J., Duarte-Olivenza C., Rodriguez C., Martín V. Role of glucose metabolism in the differential antileukemic effect of melatonin on wild-type and FLT3-ITD mutant cells. Oncol. Rep. 2020;44:293–302. doi: 10.3892/or.2020.7584. PubMed DOI
Guerra-Librero A., Fernandez-Gil B.I., Florido J., Martinez-Ruiz L., Rodríguez-Santana C., Shen Y.-Q., García-Verdugo J.M., López-Rodríguez A., Rusanova I., Quiñones-Hinojosa A., et al. Melatonin targets metabolism in head and neck cancer cells by regulating mitochondrial structure and function. Antioxidants. 2021;10:603. doi: 10.3390/antiox10040603. PubMed DOI PMC
Hevia D., González-Menéndez P., Quiros-González I., Miar A., Rodríguez-García A., Tan D.-X., Reiter R.J., Mayo J.C., Sainz R.M. Melatonin uptake through glucose transporters: A new target for melatonin inhibition of cancer. J. Pineal Res. 2015;58:234–250. doi: 10.1111/jpi.12210. PubMed DOI
Dauchy R.T., Hoffman A.E., Wren-Dail M.A., Hanifin J.P., Warfield B., Brainard G.C., Xiang S., Yuan L., Hill S.M., Belancio V.P., et al. Daytime blue light enhances the nighttime circadian melatonin inhibition of human prostate cancer growth. Comp. Med. 2015;65:473–485. PubMed PMC
Xiang S., Dauchy R.T., Hauch A., Mao L., Yuan L., Wren M.A., Belancio V.P., Mondal D., Frasch T., Blask D.E., et al. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J. Pineal Res. 2015;59:60–69. doi: 10.1111/jpi.12239. PubMed DOI PMC
Dauchy R.T., Xiang S., Mao L., Brimer S., Wren M.A., Yuan L., Anbalagan M., Hauch A., Frasch T., Rowan B.G., et al. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res. 2014;74:4099–4110. doi: 10.1158/0008-5472.CAN-13-3156. PubMed DOI PMC
Chuffa L.G.A., Lupi Júnior L.A., Seiva F.R.F., Martinez M., Domeniconi R.F., Pinheiro P.F.F., Dos Santos L.D., Martinez F.E. Quantitative proteomic profiling reveals that diverse metabolic pathways are influenced by melatonin in an in vivo model of ovarian carcinoma. J. Proteome Res. 2016;15:3872–3882. doi: 10.1021/acs.jproteome.6b00713. PubMed DOI
Mao L., Dauchy R.T., Blask D.E., Dauchy E.M., Slakey L.M., Brimer S., Yuan L., Xiang S., Hauch A., Smith K., et al. Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J. Pineal Res. 2016;60:167–177. doi: 10.1111/jpi.12298. PubMed DOI
Puzio-Kuter A.M. The role of P53 in metabolic regulation. Genes Cancer. 2011;2:385–391. doi: 10.1177/1947601911409738. PubMed DOI PMC
Gomes A.S., Ramos H., Soares J., Saraiva L. P53 and glucose metabolism: An orchestra to be directed in cancer therapy. Pharmacol. Res. 2018;131:75–86. doi: 10.1016/j.phrs.2018.03.015. PubMed DOI
Nagao A., Kobayashi M., Koyasu S., Chow C.C.T., Harada H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int. J. Mol. Sci. 2019;20:238. doi: 10.3390/ijms20020238. PubMed DOI PMC
Itahana Y., Itahana K. Emerging roles of P53 family members in glucose metabolism. Int. J. Mol. Sci. 2018;19:776. doi: 10.3390/ijms19030776. PubMed DOI PMC
Singh D., Arora R., Kaur P., Singh B., Mannan R., Arora S. Overexpression of hypoxia-inducible factor and metabolic pathways: Possible targets of cancer. Cell Biosci. 2017;7:62. doi: 10.1186/s13578-017-0190-2. PubMed DOI PMC
Martín-Renedo J., Mauriz J.L., Jorquera F., Ruiz-Andrés O., González P., González-Gallego J. Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J. Pineal Res. 2008;45:532–540. doi: 10.1111/j.1600-079X.2008.00641.x. PubMed DOI
Amin A.H., El-Missiry M.A., Othman A.I., Ali D.A., Gouida M.S., Ismail A.H. Ameliorative effects of melatonin against solid ehrlich carcinoma progression in female mice. J. Pineal Res. 2019;67:e12585. doi: 10.1111/jpi.12585. PubMed DOI
Mähler A., Mandel S., Lorenz M., Ruegg U., Wanker E.E., Boschmann M., Paul F. Epigallocatechin-3-Gallate: A useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J. 2013;4:5. doi: 10.1186/1878-5085-4-5. PubMed DOI PMC
Altemimi A., Lakhssassi N., Baharlouei A., Watson D.G., Lightfoot D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 2017;6:42. doi: 10.3390/plants6040042. PubMed DOI PMC
Barreca D., Gattuso G., Bellocco E., Calderaro A., Trombetta D., Smeriglio A., Laganà G., Daglia M., Meneghini S., Nabavi S.M. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors. 2017;43:495–506. doi: 10.1002/biof.1363. PubMed DOI
Liskova A., Koklesova L., Samec M., Varghese E., Abotaleb M., Samuel S.M., Biringer K., Petras M., Blahutova D., Smejkal K., et al. Implications of flavonoids as potential modulators of cancer neovascularity. J. Cancer Res. Clin. Oncol. 2020;146:3079–3096. doi: 10.1007/s00432-020-03383-8. PubMed DOI
Ashrafizadeh M., Najafi M., Makvandi P., Zarrabi A., Farkhondeh T., Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J. Cell. Physiol. 2020;235:9241–9268. doi: 10.1002/jcp.29819. PubMed DOI
Ashrafizadeh M., Najafi M., Orouei S., Zabolian A., Saleki H., Azami N., Sharifi N., Hushmandi K., Zarrabi A., Ahn K.S. Resveratrol modulates transforming growth factor-beta (TGF-β) signaling pathway for disease therapy: A new insight into its pharmacological activities. Biomedicines. 2020;8:261. doi: 10.3390/biomedicines8080261. PubMed DOI PMC
Ashrafizadeh M., Zarrabi A., Saberifar S., Hashemi F., Hushmandi K., Hashemi F., Moghadam E.R., Mohammadinejad R., Najafi M., Garg M. Nobiletin in cancer therapy: How this plant derived-natural compound targets various oncogene and onco-suppressor pathways. Biomedicines. 2020;8:110. doi: 10.3390/biomedicines8050110. PubMed DOI PMC
Samec M., Liskova A., Koklesova L., Mersakova S., Strnadel J., Kajo K., Pec M., Zhai K., Smejkal K., Mirzaei S., et al. Flavonoids targeting HIF-1: Implications on cancer metabolism. Cancers. 2021;13:130. doi: 10.3390/cancers13010130. PubMed DOI PMC
Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S.M., Varghese E., Abotaleb M., Biringer K., Kudela E., Danko J., et al. Flavonoids in cancer metastasis. Cancers. 2020;12:1498. doi: 10.3390/cancers12061498. PubMed DOI PMC
Abotaleb M., Samuel S., Varghese E., Varghese S., Kubatka P., Liskova A., Büsselberg D. Flavonoids in cancer and apoptosis. Cancers. 2018;11:28. doi: 10.3390/cancers11010028. PubMed DOI PMC
Ashrafizadeh M., Taeb S., Haghi-Aminjan H., Afrashi S., Moloudi K., Musa A.E., Najafi M., Farhood B. Resveratrol as an enhancer of apoptosis in cancer: A mechanistic review. Anticancer Agents Med. Chem. 2020 doi: 10.2174/1871520620666201020160348. PubMed DOI
Samec M., Liskova A., Koklesova L., Mestanova V., Franekova M., Kassayova M., Bojkova B., Uramova S., Zubor P., Janikova K., et al. Fluctuations of histone chemical modifications in breast, prostate, and colorectal cancer: An implication of phytochemicals as defenders of chromatin equilibrium. Biomolecules. 2019;9:829. doi: 10.3390/biom9120829. PubMed DOI PMC
Samec M., Liskova A., Kubatka P., Uramova S., Zubor P., Samuel S.M., Zulli A., Pec M., Bielik T., Biringer K., et al. The role of dietary phytochemicals in the carcinogenesis via the modulation of mirna expression. J. Cancer Res. Clin. Oncol. 2019;145:1665–1679. doi: 10.1007/s00432-019-02940-0. PubMed DOI
Jasek K., Kubatka P., Samec M., Liskova A., Smejkal K., Vybohova D., Bugos O., Biskupska-Bodova K., Bielik T., Zubor P., et al. DNA methylation status in cancer disease: Modulations by plant-derived natural compounds and dietary interventions. Biomolecules. 2019;9:289. doi: 10.3390/biom9070289. PubMed DOI PMC
Zhang L., He Y., Wu X., Zhao G., Zhang K., Yang C.S., Reiter R.J., Zhang J. Melatonin and (-)-epigallocatechin-3-gallate: Partners in fighting cancer. Cells. 2019;8:745. doi: 10.3390/cells8070745. PubMed DOI PMC
Vogiatzoglou A., Mulligan A.A., Lentjes M.A.H., Luben R.N., Spencer J.P.E., Schroeter H., Khaw K.-T., Kuhnle G.G.C. Flavonoid intake in european adults (18 to 64 years) PLoS ONE. 2015;10:e0128132. doi: 10.1371/journal.pone.0128132. PubMed DOI PMC
Wang D., Wei Y., Wang T., Wan X., Yang C.S., Reiter R.J., Zhang J. Melatonin attenuates (-)-epigallocatehin-3-gallate-triggered hepatotoxicity without compromising its downregulation of hepatic gluconeogenic and lipogenic genes in mice. J. Pineal Res. 2015;59:497–507. doi: 10.1111/jpi.12281. PubMed DOI
Huang Q., Li J., Xing J., Li W., Li H., Ke X., Zhang J., Ren T., Shang Y., Yang H., et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the P53-dependent signaling pathway. J. Hepatol. 2014;61:859–866. doi: 10.1016/j.jhep.2014.04.035. PubMed DOI
Song J., Ma S.-J., Luo J.-H., Zhang H., Wang R.-X., Liu H., Li L., Zhang Z.-G., Zhou R.-X. Melatonin induces the apoptosis and inhibits the proliferation of human gastric cancer cells via blockade of the AKT/MDM2 pathway. Oncol. Rep. 2018;39:1975–1983. doi: 10.3892/or.2018.6282. PubMed DOI
Proietti S., Cucina A., Dobrowolny G., D’Anselmi F., Dinicola S., Masiello M.G., Pasqualato A., Palombo A., Morini V., Reiter R.J., et al. Melatonin down-regulates MDM2 gene expression and enhances P53 acetylation in MCF-7 cells. J. Pineal Res. 2014;57:120–129. doi: 10.1111/jpi.12150. PubMed DOI
Dai M., Cui P., Yu M., Han J., Li H., Xiu R. Melatonin modulates the expression of VEGF and HIF-1 alpha induced by CoCl2 in cultured cancer cells. J. Pineal Res. 2008;44:121–126. doi: 10.1111/j.1600-079X.2007.00498.x. PubMed DOI
Kim K.-J., Choi J.-S., Kang I., Kim K.-W., Jeong C.-H., Jeong J.-W. Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. J. Pineal Res. 2013;54:264–270. doi: 10.1111/j.1600-079X.2012.01030.x. PubMed DOI
Colombo J., Maciel J.M.W., Ferreira L.C., DA Silva R.F., Zuccari D.A.P. Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol. Lett. 2016;12:231–237. doi: 10.3892/ol.2016.4605. PubMed DOI PMC
Park J.-W., Hwang M.-S., Suh S.-I., Baek W.-K. Melatonin down-regulates HIF-1 alpha expression through inhibition of protein translation in prostate cancer cells. J. Pineal Res. 2009;46:415–421. doi: 10.1111/j.1600-079X.2009.00678.x. PubMed DOI
Zhang Y., Liu Q., Wang F., Ling E.-A., Liu S., Wang L., Yang Y., Yao L., Chen X., Wang F., et al. Melatonin antagonizes hypoxia-mediated glioblastoma cell migration and invasion via inhibition of HIF-1α. J. Pineal Res. 2013;55:121–130. doi: 10.1111/jpi.12052. PubMed DOI
Qian S., Golubnitschaja O., Zhan X. Chronic inflammation: Key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10:365–381. doi: 10.1007/s13167-019-00194-x. PubMed DOI PMC
Ma S., Zhu L., Fan X., Luo T., Liu D., Liang Z., Hu X., Shi T., Tan W., Wang Z. Melatonin derivatives combat with inflammation-related cancer by targeting the main culprit STAT3. Eur. J. Med. Chem. 2021;211:113027. doi: 10.1016/j.ejmech.2020.113027. PubMed DOI
Abolhasanpour N., Alihosseini S., Golipourkhalili S., Badalzadeh R., Mahmoudi J., Hosseini L. Insight into the effects of melatonin on endoplasmic reticulum, mitochondrial function, and their cross-talk in the stroke. Arch. Med. Res. 2021 doi: 10.1016/j.arcmed.2021.04.002. PubMed DOI
Polivka J., Polivka J., Pesta M., Rohan V., Celedova L., Mahajani S., Topolcan O., Golubnitschaja O. Risks associated with the stroke predisposition at young age: Facts and hypotheses in light of individualized predictive and preventive approach. EPMA J. 2019;10:81–99. doi: 10.1007/s13167-019-00162-5. PubMed DOI PMC
Ferracioli-Oda E., Qawasmi A., Bloch M.H. Meta-analysis: Melatonin for the treatment of primary sleep disorders. PLoS ONE. 2013;8:e63773. doi: 10.1371/journal.pone.0063773. PubMed DOI PMC
Abdelgadir I.S., Gordon M.A., Akobeng A.K. Melatonin for the management of sleep problems in children with neurodevelopmental disorders: A systematic review and meta-analysis. Arch. Dis. Child. 2018;103:1155–1162. doi: 10.1136/archdischild-2017-314181. PubMed DOI
Cho J.H., Bhutani S., Kim C.H., Irwin M.R. Anti-inflammatory effects of melatonin: A systematic review and meta-analysis of clinical trials. Brain Behav. Immun. 2021;93:245–253. doi: 10.1016/j.bbi.2021.01.034. PubMed DOI PMC
Proietti S., Cucina A., Minini M., Bizzarri M. Melatonin, mitochondria, and the cancer cell. Cell. Mol. Life Sci. 2017;74:4015–4025. doi: 10.1007/s00018-017-2612-z. PubMed DOI PMC
Reiter R.J., Rosales-Corral S.A., Tan D.-X., Acuna-Castroviejo D., Qin L., Yang S.-F., Xu K. Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int. J. Mol. Sci. 2017;18:843. doi: 10.3390/ijms18040843. PubMed DOI PMC
Borin T.F., Arbab A.S., Gelaleti G.B., Ferreira L.C., Moschetta M.G., Jardim-Perassi B.V., Iskander A., Varma N.R.S., Shankar A., Coimbra V.B., et al. Melatonin decreases breast cancer metastasis by modulating rho-associated kinase protein-1 expression. J. Pineal Res. 2016;60:3–15. doi: 10.1111/jpi.12270. PubMed DOI PMC
Glenister R., McDaniel K., Francis H., Venter J., Jensen K., Dusio G., Glaser S., Meng F., Alpini G. Therapeutic actions of melatonin on gastrointestinal cancer development and progression. Transl. Gastrointest. Cancer. 2013;2:110–120. PubMed PMC
Wang S.-W., Tai H.-C., Tang C.-H., Lin L.-W., Lin T.-H., Chang A.-C., Chen P.-C., Chen Y.-H., Wang P.-C., Lai Y.-W., et al. Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression. J. Cell. Physiol. 2021;236:3979–3990. doi: 10.1002/jcp.30150. PubMed DOI
Zharinov G.M., Bogomolov O.A., Chepurnaya I.V., Neklasova N.Y., Anisimov V.N. Melatonin increases overall survival of prostate cancer patients with poor prognosis after combined hormone radiation treatment. Oncotarget. 2020;11:3723–3729. doi: 10.18632/oncotarget.27757. PubMed DOI PMC
Shen D., Ju L., Zhou F., Yu M., Ma H., Zhang Y., Liu T., Xiao Y., Wang X., Qian K. The inhibitory effect of melatonin on human prostate cancer. Cell. Commun. Signal. 2021;19:34. doi: 10.1186/s12964-021-00723-0. PubMed DOI PMC
Janssens J.P., Schuster K., Voss A. Preventive, predictive, and personalized medicine for effective and affordable cancer care. EPMA J. 2018;9:113–123. doi: 10.1007/s13167-018-0130-1. PubMed DOI PMC
Golubnitschaja O. Paradigm change from curative to predictive medicine: Novel strategic trends in Europe. Croat. Med. J. 2009;50:596–597. doi: 10.3325/cmj.2009.50.596. PubMed DOI PMC
Liskova A., Samec M., Koklesova L., Giordano F.A., Kubatka P., Golubnitschaja O. Liquid biopsy is instrumental for 3PM dimensional solutions in cancer management. J. Clin. Med. 2020;9:2749. doi: 10.3390/jcm9092749. PubMed DOI PMC
Hu R., Wang X., Zhan X. Multi-parameter systematic strategies for predictive, preventive and personalised medicine in cancer. EPMA J. 2013;4:2. doi: 10.1186/1878-5085-4-2. PubMed DOI PMC
Crigna A.T., Samec M., Koklesova L., Liskova A., Giordano F.A., Kubatka P., Golubnitschaja O. Cell-free nucleic acid patterns in disease prediction and monitoring—Hype or hope? EPMA J. 2020;11:603–627. doi: 10.1007/s13167-020-00226-x. PubMed DOI PMC
Kunin A., Sargheini N., Birkenbihl C., Moiseeva N., Fröhlich H., Golubnitschaja O. Voice perturbations under the stress overload in young individuals: Phenotyping and suboptimal health as predictors for cascading pathologies. EPMA J. 2020:517–527. doi: 10.1007/s13167-020-00229-8. PubMed DOI PMC
Goncharenko V., Bubnov R., Polivka J., Zubor P., Biringer K., Bielik T., Kuhn W., Golubnitschaja O. Vaginal dryness: Individualised patient profiles, risks and mitigating measures. EPMA J. 2019;10:73–79. doi: 10.1007/s13167-019-00164-3. PubMed DOI PMC