Nutrient supply, cell spatial correlation and Gompertzian tumor growth
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
FERS Sicilia i.n. 08CT8610100110
Regione Siciliana
cup: G89J18000700007
Regione Siciliana
PubMed
33988848
PubMed Central
PMC8120020
DOI
10.1007/s12064-021-00344-8
PII: 10.1007/s12064-021-00344-8
Knihovny.cz E-resources
- Keywords
- Cell spatial correlation, Gompertz law, Tumor cell metabolism, Tumor growth,
- MeSH
- Models, Biological MeSH
- Humans MeSH
- Neoplasms * MeSH
- Nutrients MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Gompertzian tumor growth can be reproduced by mitosis, related to nutrient supply, with local spatial cell correlations. The global energy constraint alone does not reproduce in vivo data by the observed values of the nutrient expenditure for the cell activities. The depletion of the exponential growth, described by the Gompertz law, is obtained by mean field spatial correlations or by a small word network among cells. The well-known interdependence between the two parameters of the Gompertz growth naturally emerges and depends on the cell volume and on the tumor density.
Institute of Particle and Nuclear Physics Charles University Prague Czech Republic
See more in PubMed
Afenya EK, Calderon CP. Diverse ideas on the growth kinetics of disseminated cancer cells. Bull Math Biol. 2000;62:427. doi: 10.1006/bulm.1999.0165. PubMed DOI
Anguelov R, Borisov M, Kyurkchiev N, Markov S. On the chemical meaning of some growth models possessing Gompertzian-type property. Math Meth Appl Sci. 2007;41:1–12.
Bajzer Z. Gompertzian growth as a self-similar and allometric process. Growth Dev Aging. 1999;63:3. PubMed
Bajzer Z, Vuk-Pavlovic S. New dimensions of gompertzian growth. J Theor Med. 2000;2:307. doi: 10.1080/10273660008833057. DOI
Bajzer Z, Vuk-Pavlovic S. Mathematical modeling of tumor growth kinetics. In: Adam J, Bellomo N, editors. A survey of models for tumor-immune system dynamics. Boston: Birkenhauser; 1997. p. 89.
Calderon CP, Kwembe TA. Modeling tumor growth. Math Biosci. 1991;103:97. doi: 10.1016/0025-5564(91)90093-X. PubMed DOI
Castorina P, Carco D, Guiot C, Deisboeck TS. Tumor growth instability and its implications for chemotherapy. Cancer Res. 2009;69(21):8507. doi: 10.1158/0008-5472.CAN-09-0653. PubMed DOI PMC
Castorina P, Delsanto PP, Guiot C. Classification scheme for phenomenological universalities in growth problems in physics and other sciences. Phys Rev Lett. 2006;96:188701. doi: 10.1103/PhysRevLett.96.188701. PubMed DOI
Castorina P, Zappala D. Tumor Gompertzian growth by cellular energetic balance. Physica A. 2006;365(2):473–480. doi: 10.1016/j.physa.2005.09.063. DOI
Castorina P, Iorio A, Lanteri D (2020) Data analysis on Coronavirus spreading by macroscopic growth laws. Int J Mod Phys C 31(10):2050135
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11. doi: 10.1016/j.cmet.2007.10.002. PubMed DOI
Fernandez-de-Cossio-Diaz J, Vazquez A. Limits of aerobic metabolism in cancer cells. Sci Rep. 2017;7:13488. doi: 10.1038/s41598-017-14071-y. PubMed DOI PMC
Frenzen CL, Murray JD. A cell kinetics justification for Gompertz equation. SIAM J Appl Math. 1986;46:614. doi: 10.1137/0146042. DOI
Gavrilov LA, Gavrilova NS. The reliability theory of aging and longevity. J Theor Biol. 2001;213(4):527–545. doi: 10.1006/jtbi.2001.2430. PubMed DOI
Gompertz B. On the nature of the function expressive of the law of human mortality and a new mode of determining life contingencies. Philos Trans R Soc. 1825;115:513. doi: 10.1098/rstl.1825.0026. PubMed DOI PMC
Gyllenberg M, Webb GF. Quiescence as an explanation of Gompertzian tumor growth. Growth Dev Aging. 1989;53:25. PubMed
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Jarrett AM, et al. Mathematical models of tumor cell proliferation: a review of the literature. Expert Rev Anticancer Ther. 2018;18(12):1271–1286. doi: 10.1080/14737140.2018.1527689. PubMed DOI PMC
Kendal WS. Gompertzian growth as a consequence of tumor heterogeneity. Math Biosci. 1985;73:103. doi: 10.1016/0025-5564(85)90079-3. DOI
Kozusko F, Bajzer Z. Combining Gompertzian growth and cell population dynamics. Math Biosci. 2003;185:153–167. doi: 10.1016/S0025-5564(03)00094-4. PubMed DOI
Laird AK, Tyler SA, Barton AD. Dynamics of normal growth. Br J Cancer. 1965;19:233–248. doi: 10.1038/bjc.1965.32. PubMed DOI
Laird AK, Tyler SA, Barton AD. Dynamics of tumor growth: comparison of growth rates. Br J Cancer. 1965;19:278–291. doi: 10.1038/bjc.1965.32. PubMed DOI PMC
Latora V, Nicosia V, Russo G. Complex networks—principles, methods and applications. Cambridge: Cambridge University Press; 2017.
Ling Y, He B. Entropic analysis of biological growth models. IEEE Trans Biomed Eng. 1993;40:1193. doi: 10.1109/10.250574. PubMed DOI
Makany R. A theoretical basis for GompertzÕs curve. Biometr J. 1991;33:121. doi: 10.1002/bimj.4710330115. DOI
Mombach JCM, Lemke N, Bodmann BE, Idiart MAP. A mean-field theory of cellular growth. Europhys Lett. 2002;59:923. doi: 10.1209/epl/i2002-00244-6. DOI
Mombach CM, Lemke N, Bodmann BEJ, Idiart MAP. A mean-field theory of cellular growth. Europhys Lett. 2002;59(6):923. doi: 10.1209/epl/i2002-00244-6. DOI
Murray JD. Mathematical biology. Berlin: Springer; 1989.
Norton LA. Gompertzian model of human breast cancer growth. Cancer Res. 1988;48:7067–7071. PubMed
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27. doi: 10.1016/j.cmet.2015.12.006. PubMed DOI PMC
Qi A-S, Zheng X, Du C-Y, An B-S. A cellular automaton model of cancerous growth. J Theor Biol. 1993;161:1. doi: 10.1006/jtbi.1993.1035. PubMed DOI
Savageau MA. Allometric morphogenesis of complex systems: a derivation of the basic equations from first principles. Proc Natl Acad Sci USA. 1979;76:6023. doi: 10.1073/pnas.76.12.6023. PubMed DOI PMC
Shklovskii BI. A simple derivation of the Gompertz law for human mortality. Theory Biosci. 2005;123:431–433. doi: 10.1016/j.thbio.2005.01.001. PubMed DOI
Stauffer D, Stanley HE (2017) From newton to mandelbrot. Theoretical, Mathematical and Computational Physics. Springer ed., Berlin
Vaghi C, et al. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput Biol. 2020;16(2):e1007178. doi: 10.1371/journal.pcbi.1007178. PubMed DOI PMC
Waliszewski P, Konarski J. Gompertzian curve reveals fractal properties of tumor growth. Chaos Soliton Fract. 2003;16(5):665–674. doi: 10.1016/S0960-0779(02)00469-1. DOI
Waliszewski P, Molski M, Konarski J. On the holistic ap- proach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network. J Surg Oncol. 1998;68:70–78. doi: 10.1002/(SICI)1096-9098(199806)68:2<70::AID-JSO2>3.0.CO;2-H. PubMed DOI
Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998;393:440–442. doi: 10.1038/30918. PubMed DOI
Wheldon TE. Mathematical models in cancer research. Bristol: Adam Hilger Publisher; 1988.
Witten M. A return to time, cells, systems, and aging: III. Gompertzian models of biological aging and some possible roles for critical elements. Mech Aging Dev. 1985;32:141. doi: 10.1016/0047-6374(85)90077-6. PubMed DOI
Quantitative Method for Monitoring Tumor Evolution During and After Therapy