Effects of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei supplementation on the single-cell fecal parasitome in children with celiac disease autoimmunity: a randomized, double-blind placebo-controlled clinical trial

. 2023 Nov 09 ; 16 (1) : 411. [epub] 20231109

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu randomizované kontrolované studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37946274

Grantová podpora
CZ.02.2.69/0.0/0.0/18_053/0016976 Charles University
Programme EXCELES, ID Project No. LX22NPO5103 National Institute of Virology and Bacteriology
Programme EXCELES, ID Project No. LX22NPO5103 National Institute of Virology and Bacteriology
No 874864 HEDIMED European Union's Horizon 2020 research and innovation programme
No 874864 HEDIMED European Union's Horizon 2020 research and innovation programme
No 874864 HEDIMED European Union's Horizon 2020 research and innovation programme
COST Action CA21105 COST
Grant/Award No.: 2018-02553 Swedish Research Council

Odkazy

PubMed 37946274
PubMed Central PMC10636941
DOI 10.1186/s13071-023-06027-1
PII: 10.1186/s13071-023-06027-1
Knihovny.cz E-zdroje

BACKGROUND: Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 positively affect the fecal bacteriome in children with celiac disease autoimmunity after 6 months of supplementation. The aim of the present investigation was to study the effects of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 on the single-cell parasitome, with a primary focus on Blastocystis. METHODS: Stool samples were collected from 78 Swedish children with celiac disease autoimmunity participating in a randomized, double-blind, placebo-controlled clinical trial to either receive a mixture of supplementation with L. plantarum HEAL9 and L. paracasei 8700:2 (n = 38) or placebo (n = 40). A total of 227 stool samples collected at baseline and after 3 and 6 months of intervention, respectively, were retrospectively analyzed for Blastocystis by quantitative real-time PCR and subtyped by massively parallel amplicon sequencing. Other single-cell parasites were detected by untargeted 18S rDNA amplicon sequencing and verified by real-time PCR. The relation between the parasites and the bacteriome community was characterized by using 16S rDNA profiling of the V3-V4 region. RESULTS: Three different single-cell protists were identified, of which the highest prevalence was found for Dientamoeba fragilis (23.1%, 18/78 children), followed by Blastocystis (15.4%, 12/78) and Entamoeba spp. (2.6%, 2/78). The quantity of the protists was stable over time and not affected by probiotic intervention (P = 0.14 for Blastocystis, P = 0.10 for D. fragilis). The positivity of the protists was associated with increased bacteriome diversity (measured by multiple indices, P < 0.03). Bacterial composition was influenced by the presence of the protists: positivity of Blastocystis was inversely associated with Akkermansia (at the levels of the genus as well as its family, order, class and phylum); P < 0.002), Faecalibacterium (P = 0.003) and Romboutsia (P = 0.029); positivity of D. fragilis was inversely associated with families Enterobacteriaceae (P = 0.016) and Coriobacteriaceae (P = 0.022) and genera Flavonifractor (P < 0.001), Faecalibacterium (P = 0.009), Lachnoclostridium (P = 0.029), Ruminococcus (P < 0.001) and Granulicatella (P = 0.018). CONCLUSIONS: The prevalence of single-cell protists is low in children with celiac disease autoimmunity. The colonization was stable regardless of the probiotic intervention and associated with increased diversity of the fecal bacteriome but inversely associated with some beneficial bacteria.

Zobrazit více v PubMed

Tito RY, Chaffron S, Caenepeel C, Lima-Mendez G, Wang J, Vieira-Silva S, et al. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut. 2019;68:1180–1189. doi: 10.1136/gutjnl-2018-316106. PubMed DOI PMC

Andersen LO, Bonde I, Nielsen HB, Stensvold CR. A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiol Ecol. 2015 doi: 10.1093/femsec/fiv072. PubMed DOI

Rostami A, Riahi SM, Haghighi A, Saber V, Armon B, Seyyedtabaei SJ. The role of Blastocystis sp. and Dientamoeba fragilis in irritable bowel syndrome: a systematic review and meta-analysis. Parasitol Res. 2017;116:2361–71. doi: 10.1007/s00436-017-5535-6. PubMed DOI

Clark CG, van der Giezen M, Alfellani MA, Stensvold CR. Recent developments in Blastocystis research. Adv Parasitol. 2013;82:1–32. doi: 10.1016/B978-0-12-407706-5.00001-0. PubMed DOI

Cinek O, Polackova K, Odeh R, Alassaf A, Kramna L, Ibekwe MU, et al. Blastocystis in the faeces of children from six distant countries: prevalence, quantity, subtypes and the relation to the gut bacteriome. Parasit Vectors. 2021;14:399. doi: 10.1186/s13071-021-04859-3. PubMed DOI PMC

Poulsen CS, Efunshile AM, Nelson JA, Stensvold CR. Epidemiological aspects of blastocystis colonization in children in Ilero. Nigeria Am J Trop Med Hyg. 2016;95:175–179. doi: 10.4269/ajtmh.16-0074. PubMed DOI PMC

Mohammad NA, Al-Mekhlafi HM, Moktar N, Anuar TS. Prevalence and risk factors of Blastocystis infection among underprivileged communities in rural Malaysia. Asian Pac J Trop Med. 2017;10:491–497. doi: 10.1016/j.apjtm.2017.05.001. PubMed DOI

Oliveira-Arbex AP, David EB, Guimaraes S. Blastocystis genetic diversity among children of low-income daycare center in Southeastern Brazil. Infect Genet Evol. 2018;57:59–63. doi: 10.1016/j.meegid.2017.11.005. PubMed DOI

Wawrzyniak I, Poirier P, Viscogliosi E, Dionigia M, Texier C, Delbac F, et al. Blastocystis, an unrecognized parasite: an overview of pathogenesis and diagnosis. Ther Adv Infect Dis. 2013;1:167–178. doi: 10.1177/2049936113504754. PubMed DOI PMC

Stensvold CR, Clark CG. Current status of Blastocystis: a personal view. Parasitol Int. 2016;65:763–71. doi: 10.1016/j.parint.2016.05.015. PubMed DOI

Bart A, Wentink-Bonnema EM, Gilis H, Verhaar N, Wassenaar CJ, van Vugt M, et al. Diagnosis and subtype analysis of Blastocystis sp. in 442 patients in a hospital setting in the Netherlands. BMC Infect Dis. 2013;13:389. doi: 10.1186/1471-2334-13-389. PubMed DOI PMC

El Safadi D, Cian A, Nourrisson C, Pereira B, Morelle C, Bastien P, et al. Prevalence, risk factors for infection and subtype distribution of the intestinal parasite Blastocystis sp. from a large-scale multi-center study in France. BMC Infect Dis. 2016;16:451. doi: 10.1186/s12879-016-1776-8. PubMed DOI PMC

Scanlan PD, Knight R, Song SJ, Ackermann G, Cotter PD. Prevalence and genetic diversity of Blastocystis in family units living in the United States. Infect Genet Evol. 2016;45:95–97. doi: 10.1016/j.meegid.2016.08.018. PubMed DOI

Scanlan PD, Stensvold CR, Rajilic-Stojanovic M, Heilig HG, De Vos WM, O'Toole PW, et al. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol. 2014;90:326–330. doi: 10.1111/1574-6941.12396. PubMed DOI

Lhotska Z, Jirku M, Hlozkova O, Brozova K, Jirsova D, Stensvold CR, et al. A study on the prevalence and subtype diversity of the intestinal protist Blastocystis sp. in a gut-healthy human population in the Czech Republic. Front Cell Infect Microbiol. 2020;10:544335. doi: 10.3389/fcimb.2020.544335. PubMed DOI PMC

Maloney JG, Molokin A, da Cunha MJR, Cury MC, Santin M. Blastocystis subtype distribution in domestic and captive wild bird species from Brazil using next generation amplicon sequencing. Parasite Epidemiol Control. 2020;9:e00138. doi: 10.1016/j.parepi.2020.e00138S2405-6731(20)30007-6[pii]e00138[pii]. PubMed DOI PMC

Stensvold CR, Clark CG. Pre-empting Pandora’s box: Blastocystis subtypes revisited. Trends Parasitol. 2020;36:229–232. doi: 10.1016/j.pt.2019.12.009. PubMed DOI

Alfellani MA, Stensvold CR, Vidal-Lapiedra A, Onuoha ES, Fagbenro-Beyioku AF, Clark CG. Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta Trop. 2013;126:11–18. doi: 10.1016/j.actatropica.2012.12.011. PubMed DOI

Stark D, Barratt J, Chan D, Ellis JT. Dientamoeba fragilis, the neglected trichomonad of the human bowel. Clin Microbiol Rev. 2016;29:553–580. doi: 10.1128/CMR.00076-15. PubMed DOI PMC

Jokelainen P, Hebbelstrup Jensen B, Andreassen BU, Petersen AM, Roser D, Krogfelt KA, et al. Dientamoeba fragilis, a commensal in children in Danish day care centers. J Clin Microbiol. 2017;55:1707–1713. doi: 10.1128/JCM.00037-17. PubMed DOI PMC

Jirku M, Kasparova A, Lhotska Z, Obornik M, Brozova K, Petrzelkova KJ, et al. A cross-sectional study on the occurrence of the intestinal protist, Dientamoeba fragilis, in the gut-healthy volunteers and their animals. Int J Mol Sci. 2022 doi: 10.3390/ijms232315407. PubMed DOI PMC

Stensvold CR, Arendrup MC, Molbak K, Nielsen HV. The prevalence of Dientamoeba fragilis in patients with suspected enteroparasitic disease in a metropolitan area in Denmark. Clin Microbiol Infect. 2007;13:839–842. doi: 10.1111/j.1469-0691.2007.01760.x. PubMed DOI

Barratt JL, Harkness J, Marriott D, Ellis JT, Stark D. A review of Dientamoeba fragilis carriage in humans: several reasons why this organism should be considered in the diagnosis of gastrointestinal illness. Gut Microbes. 2011;2:3–12. doi: 10.4161/gmic.2.1.14755. PubMed DOI

Windsor JJ, Johnson EH. Dientamoeba fragilis: the unflagellated human flagellate. Br J Biomed Sci. 1999;56:293–306. PubMed

Oliveira-Arbex AP, David EB, Caccio SM, Fonseca C, Martin JG, Kurokawa CS, et al. Prevalence and genetic characterization of Dientamoeba fragilis in asymptomatic children attending daycare centers. Rev Inst Med Trop Sao Paulo. 2021;63:e39. doi: 10.1590/S1678-9946202163039. PubMed DOI PMC

Ogren J, Van Nguyen S, Nguyen MK, Dimberg J, Matussek A. Prevalence of Dientamoeba fragilis, Giardia duodenalis, Entamoeba histolytica/dispar, and Cryptosporidium spp in Da Nang, Vietnam, detected by a multiplex real-time PCR. APMIS. 2016;124:529–533. doi: 10.1111/apm.12535. PubMed DOI

Barry MA, Weatherhead JE, Hotez PJ, Woc-Colburn L. Childhood parasitic infections endemic to the United States. Pediatr Clin North Am. 2013;60:471–485. doi: 10.1016/j.pcl.2012.12.011. PubMed DOI

Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med. 1989;169:345–350. doi: 10.1084/jem.169.1.345. PubMed DOI PMC

Kemppainen KM, Lynch KF, Liu E, Lonnrot M, Simell V, Briese T, et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin Gastroenterol Hepatol. 2017;15:694–702 e5. doi: 10.1016/j.cgh.2016.10.033. PubMed DOI PMC

Sanchez E, Donat E, Ribes-Koninckx C, Fernandez-Murga ML, Sanz Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol. 2013;79:5472–5479. doi: 10.1128/AEM.00869-13. PubMed DOI PMC

Kondrashova A, Mustalahti K, Kaukinen K, Viskari H, Volodicheva V, Haapala AM, et al. Lower economic status and inferior hygienic environment may protect against celiac disease. Ann Med. 2008;40:223–231. doi: 10.1080/07853890701678689. PubMed DOI

Oikarinen M, Puustinen L, Lehtonen J, Hakola L, Simell S, Toppari J, et al. Enterovirus infections are associated with the development of celiac disease in a birth cohort study. Front Immunol. 2020;11:604529. doi: 10.3389/fimmu.2020.604529. PubMed DOI PMC

Tapia G, Chuda K, Kahrs CR, Stene LC, Kramna L, Marild K, et al. Parechovirus infection in early childhood and association with subsequent celiac disease. Am J Gastroenterol. 2021;116:788–795. doi: 10.14309/ajg.0000000000001003. PubMed DOI

Hakansson A, Andren Aronsson C, Brundin C, Oscarsson E, Molin G, Agardh D. Effects of Lactobacillus plantarum and Lactobacillus paracasei on the peripheral immune response in children with celiac disease autoimmunity: a randomized, double-blind placebo-controlled clinical trial. Nutrients. 2019 doi: 10.3390/nu11081925. PubMed DOI PMC

Oscarsson E, Hakansson A, Andren Aronsson C, Molin G, Agardh D. Effects of probiotic bacteria Lactobacillaceae on the gut microbiota in children with celiac disease autoimmunity: a placebo-controlled and randomized clinical trial. Front Nutr. 2021;8:680771. doi: 10.3389/fnut.2021.680771. PubMed DOI PMC

Stensvold CR, Ahmed UN, Andersen LO, Nielsen HV. Development and evaluation of a genus-specific, probe-based, internal-process-controlled real-time PCR assay for sensitive and specific detection of Blastocystis spp. J Clin Microbiol. 2012;50:1847–1851. doi: 10.1128/JCM.00007-12. PubMed DOI PMC

Sloufova M, Lhotska Z, Jirku M, Petrzelkova KJ, Stensvold CR, Cinek O, et al. Comparison of molecular diagnostic approaches for the detection and differentiation of the intestinal protist Blastocystis sp in humans. Parasite. 2022;29:30. doi: 10.1051/parasite/2022029. PubMed DOI PMC

Maloney JG, Molokin A, Santin M. Next generation amplicon sequencing improves detection of Blastocystis mixed subtype infections. Infect Genet Evol. 2019;73:119–125. doi: 10.1016/j.meegid.2019.04.013. PubMed DOI

Santin M, Gomez-Munoz MT, Solano-Aguilar G, Fayer R. Development of a new PCR protocol to detect and subtype Blastocystis spp. from humans and animals. Parasitol Res. 2011;109:205–12. doi: 10.1007/s00436-010-2244-9. PubMed DOI

Verweij JJ, Mulder B, Poell B, van Middelkoop D, Brienen EA, van Lieshout L. Real-time PCR for the detection of Dientamoeba fragilis in fecal samples. Mol Cell Probes. 2007;21:400–404. doi: 10.1016/j.mcp.2007.05.006. PubMed DOI

Hurych J, Vodolanova L, Vejmelka J, Drevinek P, Kohout P, Cinek O, et al. Freezing of faeces dramatically decreases the viability of Blastocystis sp. and Dientamoeba fragilis. Eur J Gastroenterol Hepatol. 2022;34:242–3. doi: 10.1097/MEG.0000000000002327. PubMed DOI

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al: vegan: Community Ecology Package. R package version 2.5–6. 2019.

McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Team RC . R: a language and environment for statistical computing. 3.4.2. Vienna: R Foundation for Statistical Computing; 2018.

Bach JF. Protective role of infections and vaccinations on autoimmune diseases. J Autoimmun. 2001;16:347–353. doi: 10.1006/jaut.2000.0478. PubMed DOI

Soleimani Jevinani S, Mohammad Rahimi H, Asri N, Rostami-Nejad M, Ahmadipour S, Mirjalali H. Molecular epidemiology and subtyping of Blastocystis sp. and its subtypes in celiac patients; a case control study. Microb Pathog. 2023;179:106086. doi: 10.1016/j.micpath.2023.106086. PubMed DOI

El Safadi D, Gaayeb L, Meloni D, Cian A, Poirier P, Wawrzyniak I, et al. Children of Senegal river basin show the highest prevalence of Blastocystis sp. ever observed worldwide. BMC Infect Dis. 2014;14:164. doi: 10.1186/1471-2334-14-164. PubMed DOI PMC

Roser D, Simonsen J, Nielsen HV, Stensvold CR, Molbak K. Dientamoeba fragilis in Denmark: epidemiological experience derived from four years of routine real-time PCR. Eur J Clin Microbiol Infect Dis. 2013;32:1303–1310. doi: 10.1007/s10096-013-1880-2. PubMed DOI

Ogren J, Dienus O, Lofgren S, Einemo IM, Iveroth P, Matussek A. Dientamoeba fragilis prevalence coincides with gastrointestinal symptoms in children less than 11 years old in Sweden. Eur J Clin Microbiol Infect Dis. 2015;34:1995–1998. doi: 10.1007/s10096-015-2442-6. PubMed DOI PMC

van Bruijnesteijn CLE, Dullaert-de BM, Ruijs GJ, van der Reijden WA, van der Zanden AG, Weel JF, et al. Case-control comparison of bacterial and protozoan microorganisms associated with gastroenteritis: application of molecular detection. Clin Microbiol Infect. 2015;21:592–e9–19. PubMed

de Wit MA, Koopmans MP, Kortbeek LM, van Leeuwen NJ, Vinje J, van Duynhoven YT. Etiology of gastroenteritis in sentinel general practices in the Netherlands. Clin Infect Dis. 2001;33:280–288. doi: 10.1086/321875. PubMed DOI

Dinleyici EC, Eren M, Dogan N, Reyhanioglu S, Yargic ZA, Vandenplas Y. Clinical efficacy of Saccharomyces boulardii or metronidazole in symptomatic children with Blastocystis hominis infection. Parasitol Res. 2011;108:541–545. doi: 10.1007/s00436-010-2095-4. PubMed DOI

Lepczynska M, Dzika E. The influence of probiotic bacteria and human gut microorganisms causing opportunistic infections on Blastocystis ST3. Gut Pathog. 2019;11:6. doi: 10.1186/s13099-019-0287-8. PubMed DOI PMC

Di Biase AR, Marasco G, Ravaioli F, Dajti E, Colecchia L, Righi B, et al. Gut microbiota signatures and clinical manifestations in celiac disease children at onset: a pilot study. J Gastroenterol Hepatol. 2021;36:446–454. doi: 10.1111/jgh.15183. PubMed DOI

Bodkhe R, Shetty SA, Dhotre DP, Verma AK, Bhatia K, Mishra A, et al. Comparison of small gut and whole gut microbiota of first-degree relatives with adult celiac disease patients and controls. Front Microbiol. 2019;10:164. doi: 10.3389/fmicb.2019.00164. PubMed DOI PMC

Quagliariello A, Aloisio I, Bozzi Cionci N, Luiselli D, D'Auria G, Martinez-Priego L, et al. Effect of Bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: a pilot study. Nutrients. 2016 doi: 10.3390/nu8100660. PubMed DOI PMC

Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62:264–269. doi: 10.1136/jcp.2008.061366. PubMed DOI

Leonard MM, Valitutti F, Karathia H, Pujolassos M, Kenyon V, Fanelli B, et al. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci USA. 2021 doi: 10.1073/pnas.2020322118. PubMed DOI PMC

Rodrigues VF, Elias-Oliveira J, Pereira IS, Pereira JA, Barbosa SC, Machado MSG, et al. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol. 2022;13:934695. doi: 10.3389/fimmu.2022.934695. PubMed DOI PMC

Turjeman S, Sharon E, Levin R, Oralewska B, Szaflarska-Poplawska A, Bierla JB, et al. Celiac-the lone horse? An autoimmune condition without signals of microbiota dysbiosis. Microbiol Spectr. 2023 doi: 10.1128/spectrum.01463-23. PubMed DOI PMC

Nieves-Ramirez ME, Partida-Rodriguez O, Laforest-Lapointe I, Reynolds LA, Brown EM, Valdez-Salazar A, et al. Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. mSystems. 2018 doi: 10.1128/mSystems.00007-18. PubMed DOI PMC

Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469–76. doi: 10.1099/ijs.0.02873-0. PubMed DOI

Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol. 2000;66:1654–1661. doi: 10.1128/AEM.66.4.1654-1661.2000. PubMed DOI PMC

Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–16736. doi: 10.1073/pnas.0804812105. PubMed DOI PMC

Testerman T, Li Z, Galuppo B, Graf J, Santoro N. Insights from shotgun metagenomics into bacterial species and metabolic pathways associated with NAFLD in obese youth. Hepatol Commun. 2022;6:1962–1974. doi: 10.1002/hep4.1944. PubMed DOI PMC

Bojovic K, Ignjatovic Eth I, Sokovic Bajic S, Vojnovic Milutinovic D, Tomic M, Golic N, et al. Gut microbiota dysbiosis associated with altered production of short chain fatty acids in children with neurodevelopmental disorders. Front Cell Infect Microbiol. 2020;10:223. doi: 10.3389/fcimb.2020.00223. PubMed DOI PMC

Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27:321–332. doi: 10.1038/s41591-020-01183-8. PubMed DOI PMC

Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–422. doi: 10.1038/s41579-018-0029-9. PubMed DOI

Zierdt CH. Blastocystis hominis–past and future. Clin Microbiol Rev. 1991;4:61–79. doi: 10.1128/CMR.4.1.61. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...