A Window into the Workings of anti-B18H22 Luminescence-Blue-Fluorescent Isomeric Pair 3,3'-Cl2-B18H20 and 3,4'-Cl2-B18H20 (and Others)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-07563S
Czech Science Foundation
PubMed
37298983
PubMed Central
PMC10254427
DOI
10.3390/molecules28114505
PII: molecules28114505
Knihovny.cz E-zdroje
- Klíčová slova
- anti-B18H22, chlorination, cluster boron hydrides, excited-state lifetime, fluorescence, halogenation, luminescence, quantum yield, substitution,
- MeSH
- halogenace * MeSH
- isomerie MeSH
- luminiscence * MeSH
- molekulární struktura MeSH
- Publikační typ
- časopisecké články MeSH
The action of AlCl3 on room-temperature tetrachloromethane solutions of anti-B18H22 (1) results in a mixture of fluorescent isomers, 3,3'-Cl2-B18H20 (2) and 3,4'-Cl2-B18H20 (3), together isolated in a 76% yield. Compounds 2 and 3 are capable of the stable emission of blue light under UV-excitation. In addition, small amounts of other dichlorinated isomers, 4,4'-Cl2-B18H20 (4), 3,1'-Cl2-B18H20 (5), and 7,3'-Cl2-B18H20 (6) were isolated, along with blue-fluorescent monochlorinated derivatives, 3-Cl-B18H21 (7) and 4-Cl-B18H21 (8), and trichlorinated species 3,4,3'-Cl3-B18H19 (9) and 3,4,4'-Cl3-B18H19 (10). The molecular structures of these new chlorinated derivatives of octadecaborane are delineated, and the photophysics of some of these species are discussed in the context of the influence that chlorination bears on the luminescence of anti-B18H22. In particular, this study produces important information on the effect that the cluster position of these substitutions has on luminescence quantum yields and excited-state lifetimes.
Zobrazit více v PubMed
Beall H., Gaines D.F. Encyclopedia of Physical Science and Technology. 3rd ed. Academic Press; Cambridge, MA, USA: 2003. Boron Hydrides; pp. 301–316.
Shea S.L., Bould J., Londesborough M.G.S., Perera S.D., Franken A., Ormsby D.L., Jelínek T., Štíbr B., Holub J., Kilner C.A., et al. Polyhedral boron-containing cluster chemistry: Aspects of architecture beyond the icosahedron. Pure Appl. Chem. 2003;75:1239–1248. doi: 10.1351/pac200375091239. DOI
Cerdán L., Braborec J., Garcia-Moreno I., Costela A., Londesborough M.G.S. A Borane Laser. Nat. Commun. 2015;6:5958. doi: 10.1038/ncomms6958. PubMed DOI
Londesborough M.G.S., Hnyk D., Bould J., Serrano-Andrés L., Sauri V., Oliva J.M., Kubat P., Polivka T., Lang K. Distinct Photophysics of the Isomers of B18H22 Explained. Inorg. Chem. 2012;51:1471–1479. doi: 10.1021/ic201726k. PubMed DOI
Ševčík J., Urbánek P., Hanulíková B., Čapková T., Urbánek M., Antoš J., Londesborough M.G.S., Bould J., Ghasemi B., Petřkovský L., et al. The Photostability of Novel Boron Hydride Blue Emitters in Solution and Polystyrene Matrix. Materials. 2021;14:589. doi: 10.3390/ma14030589. PubMed DOI PMC
Sauri V., Oliva J.M., Hnyk D., Bould J., Braborec J., Merchan M., Kubat P., Císařová I., Lang K., Londesborough M.G.S. Tuning the Photophysical Properties of anti-B18H22: Efficient Intersystem Crossing between Excited Singlet and Triplet States in New 4,4′-(HS)2-anti-B18H20. Inorg. Chem. 2013;52:9266–9274. doi: 10.1021/ic4004559. PubMed DOI
Anderson K.P., Waddington M.A., Balaich G.J., Stauber J.M., Bernier N.A., Caram J.R., Djurovich P.I., Spokoyny A. A Molecular Boron Cluster-Based Chromophore with Dual Emission. Dalton Trans. 2020;49:16245–16251. doi: 10.1039/D0DT00826E. PubMed DOI
Anderson K.P., Hua A.S., Plumley J.B., Ready A.D., Rheingold A.L., Peng T.L., Djurovich P.I., Kerestes C., Snyder N.A., Andrews A., et al. Benchmarking the dynamic luminescence properties and UV stability of B18H22-based materials. Dalton Trans. 2022;51:9223–9228. doi: 10.1039/D2DT01225A. PubMed DOI
Londesborough M.G.S., Dolanský J., Bould J., Braborec J., Kirakci K., Lang K., Císařová I., Kubát P., Roca-Sanjuán D., Francés-Monerris A., et al. Effect of Iodination on the Photophysics of the Laser Borane anti-B18H22: Generation of Efficient Photosensitizers of Oxygen. Inorg. Chem. 2019;58:10248–10259. doi: 10.1021/acs.inorgchem.9b01358. PubMed DOI
Bould J., Lang K., Kirakci K., Cerdán L., Roca-Sanjuán D., Francés-Monerris A., Clegg W., Waddell P.G., Fuciman M., Polívka T., et al. A Series of Ultra-Efficient Blue Borane Fluorophores. Inorg. Chem. 2020;59:17058–17070. doi: 10.1021/acs.inorgchem.0c02277. PubMed DOI
Londesborough M.G.S., Dolanský J., Cerdán L., Lang K., Jelínek T., Oliva J.M., Hnyk D., Roca-Sanjuán D., Francés-Monerris A., Martinčík J., et al. Thermochromic Fluorescence from B18H20(NC5H5)2: An Inorganic–Organic Composite Luminescent Compound with an Unusual Molecular Geometry. Adv. Opt. Mater. 2017;5:1600694. doi: 10.1002/adom.201600694. DOI
Londesborough M.G.S., Dolanský J., Jelínek T., Kennedy J.D., Císařová I., Kennedy R.D., Roca-Sanjuán D., Francés-Monerris A., Lang K., Clegg W. Substitution of the laser borane anti-B18H22 with pyridine: A structural and photophysical study of some unusually structured macropolyhedral boron hydrides. Dalton Trans. 2018;47:1709–1725. doi: 10.1039/C7DT03823B. PubMed DOI
Olsen F.P., Vasavada R.C., Hawthorne M.F. The chemistry of n-B18H22 and i-B18H22. J. Am. Chem. Soc. 1968;90:3946–3951. doi: 10.1021/ja01017a007. DOI
Anderson K.P., Djurovich P.I., Rubio V.P., Liang A., Spokoyny A.M. Metal-Catalyzed and Metal-Free Nucleophilic Substitution of 7-I-B18H21. Inorg. Chem. 2022;61:15051–15057. doi: 10.1021/acs.inorgchem.2c02116. PubMed DOI
Anderson K.P., Rheingold A.L., Djurovich P.I., Soman O., Spokoyny A.M. Synthesis and luminescence of monohalogenated B18H22 clusters. Polyhedron. 2022;227:116099. doi: 10.1016/j.poly.2022.116099. DOI
Londesborough M.G.S., Lang K., Clegg W., Waddell P.G., Bould J. Swollen Polyhedral Volume of the anti-B18H22 Cluster via Extensive Methylation: Anti-B18H8Cl2Me12. Inorg. Chem. 2020;59:2651–2654. doi: 10.1021/acs.inorgchem.0c00179. PubMed DOI
Londesborough M.G.S., Macias R., Kennedy J.D., Clegg W., Bould J. Macropolyhedral Nickelaboranes from the Metal-Assisted Fusion of KB9H14. Inorg. Chem. 2019;58:13258–13267. doi: 10.1021/acs.inorgchem.9b02116. PubMed DOI
Hamilton E.J.M., Kultyshev R.G., Du B., Meyers E.A., Liu S., Hadad C.M., Shore S.G. A Stacking Interaction between a Bridging Hydrogen Atom and Aromatic π Density in the n-B18H22–Benzene System. Chem. Eur. J. 2006;12:2571–2578. doi: 10.1002/chem.200501043. PubMed DOI
Gaines D.F., Nelson C.K., Steehler G.A. Preparation of n-Octadecaborane(22), n-B18H22, by Oxidative Fusion of Dodecahydrononaborane(l-) Clusters. JACS. 1984;106:7266–7267. doi: 10.1021/ja00335a079. DOI
Sheldrick G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Cerdán L., Francés-Monerris A., Roca-Sanjuán D., Bould J., Dolanský J., Fuciman M., Londesborough M.G.S. Unveiling the Role of Upper Excited States in the Photochemistry and Laser Performance of anti-B18H22. J. Mater. Chem. C. 2020;8:12806–12818. doi: 10.1039/D0TC02309D. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian, Versions 09 and 16. Gaussian, Inc.: Wallingford, CT, USA, 2013 and 2016. [(accessed on 2 May 2023)]. Available online: https://gaussian.com/