Non-coding transcriptome profiles in clear-cell renal cell carcinoma
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39242964
DOI
10.1038/s41585-024-00926-3
PII: 10.1038/s41585-024-00926-3
Knihovny.cz E-zdroje
- MeSH
- karcinom z renálních buněk * genetika diagnóza MeSH
- lidé MeSH
- nádorové biomarkery * genetika MeSH
- nádory ledvin * genetika diagnóza MeSH
- nekódující RNA * genetika MeSH
- prognóza MeSH
- regulace genové exprese u nádorů MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorové biomarkery * MeSH
- nekódující RNA * MeSH
Clear-cell renal cell carcinoma (ccRCC) is a common urological malignancy with an increasing incidence. The development of molecular biomarkers that can predict the response to treatment and guide personalized therapy selection would substantially improve patient outcomes. Dysregulation of non-coding RNA (ncRNA) has been shown to have a role in the pathogenesis of ccRCC. Thus, an increasing number of studies are being carried out with a focus on the identification of ncRNA biomarkers in ccRCC tissue samples and the connection of these markers with patients' prognosis, pathological stage and grade (including metastatic potential), and therapy outcome. RNA sequencing analysis led to the identification of several ncRNA biomarkers that are dysregulated in ccRCC and might have a role in ccRCC development. These ncRNAs have the potential to be prognostic and predictive biomarkers for ccRCC, with prospective applications in personalized treatment selection. Research on ncRNA biomarkers in ccRCC is advancing, but clinical implementation remains preliminary owing to challenges in validation, standardization and reproducibility. Comprehensive studies and integration of ncRNAs into clinical trials are essential to accelerate the clinical use of these biomarkers.
Zobrazit více v PubMed
Lipworth, L., Tarone, R. E. & McLaughlin, J. K. The epidemiology of renal cell carcinoma. J. Urol. 176, 2353–2358 (2006). PubMed DOI
Moch, H. et al. The 2022 World Health Organization classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. Eur. Urol. 82, 458–468 (2022). PubMed DOI
Hora, M. et al. European Association of Urology guidelines panel on renal cell carcinoma update on the new World Health Organization classification of kidney tumours 2022: the urologist’s point of view. Eur. Urol. 83, 97–100 (2023). PubMed DOI
Ma, Y., Huang, Z., Jian, Z. & Wei, X. The association between hepatitis C virus infection and renal cell cancer, prostate cancer, and bladder cancer: a systematic review and meta-analysis. Sci. Rep. 11, 10833 (2021). PubMed DOI PMC
Macleod, L. C. et al. Risk factors for renal cell carcinoma in the VITAL study. J. Urol. 190, 1657–1661 (2013). PubMed DOI PMC
Ljungberg, B. et al. The epidemiology of renal cell carcinoma. Eur. Urol. 60, 615–621 (2011). PubMed DOI
Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994). PubMed DOI
Stolle, C. et al. Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum. Mutat. 12, 417–423 (1998). PubMed DOI
Rathmell, W. K. & Chen, S. VHL inactivation in renal cell carcinoma: implications for diagnosis, prognosis, and treatment. Expert. Rev. Anticancer. Ther. 8, 63–73 (2008). PubMed DOI PMC
Seizinger, B. R. et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332, 268–269 (1988). PubMed DOI
Zbar, B., Brauch, H., Talmadge, C. & Linehan, M. Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327, 721–724 (1987). PubMed DOI
Kovacs, G. et al. Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc. Natl Acad. Sci. USA 85, 1571–1575 (1988). PubMed DOI PMC
van der Hout, A. H. et al. Direct molecular analysis of a deletion of 3p in tumors from patients with sporadic renal cell carcinoma. Cancer Genet. Cytogenet. 32, 281–285 (1988). PubMed DOI
Maher, E. R. et al. Clinical features and natural history of von Hippel-Lindau disease. Q. J. Med. 77, 1151–1163 (1990). PubMed DOI
Sheng, I. Y. & Ornstein, M. C. Ipilimumab and nivolumab as first-line treatment of patients with renal cell carcinoma: the evidence to date. Cancer Manag. Res. 12, 4871–4881 (2020). PubMed DOI PMC
Motzer, R. J. et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 71–90 (2022). DOI
NCCN. NCCN guidelines version 2.2024 kidney cancer. NCCN https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf (2024).
Katz, M. D. et al. The role of lymphovascular space invasion in renal cell carcinoma as a prognostic marker of survival after curative resection. Urol. Oncol. 29, 738–744 (2011). PubMed DOI
Kim, S. H. et al. Prognostic significance of pathologic nodal positivity in non-metastatic patients with renal cell carcinoma who underwent radical or partial nephrectomy. Sci. Rep. 11, 3079 (2021). PubMed DOI PMC
Hahn, A. W. et al. The significance of sarcomatoid and rhabdoid dedifferentiation in renal cell carcinoma. Cancer Treat. Res. Commun. 33, 100640 (2022). PubMed DOI
Delahunt, B. et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am. J. Surg. Pathol. 37, 1490–1504 (2013). PubMed DOI
Joseph, R. W. et al. PD-1 and PD-L1 expression in renal cell carcinoma with sarcomatoid differentiation. Cancer Immunol. Res. 3, 1303–1307 (2015). PubMed DOI PMC
Wang, H. et al. Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol. Ther. 234, 108123 (2022). PubMed DOI
Li, Z.-X. et al. MALAT1: a potential biomarker in cancer. Cancer Manag. Res. 10, 6757–6768 (2018). PubMed DOI PMC
Hajjari, M. & Salavaty, A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol. Med. 12, 1–9 (2015). PubMed PMC
Xin, X., Li, Q., Fang, J., Zhao, T. & LncRNA HOTAIR: a potential prognostic factor and therapeutic target in human cancers. Front. Oncol. 11, 679244 (2021). PubMed DOI PMC
Tiansheng, G. et al. lncRNA metastasis-associated lung adenocarcinoma transcript 1 promotes proliferation and invasion of non-small cell lung cancer cells via down-regulating miR-202 expression. Cell J. 22, 375–385 (2020). PubMed
Chen, W. et al. MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget 8, 94317–94329 (2017). PubMed DOI PMC
Li, P. et al. MALAT1 is associated with poor response to oxaliplatin-based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2. Mol. Cancer Ther. 16, 739–751 (2017). PubMed DOI
Elsayed, E. T., Salem, P. E., Darwish, A. M. & Fayed, H. M. Plasma long non-coding RNA HOTAIR as a potential biomarker for gastric cancer. Int. J. Biol. Markers https://doi.org/10.1177/1724600818760244 (2018).
Entezari, M. et al. LncRNA-miRNA axis in tumor progression and therapy response: an emphasis on molecular interactions and therapeutic interventions. Biomed. Pharmacother. 154, 113609 (2022). PubMed DOI
Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021). PubMed DOI
European Association of Urology. EAU Guidelines on RCC. Uroweb https://uroweb.org/guidelines/renal-cell-carcinoma (2024).
FDA. List of cleared or approved companion diagnostic devices (in vitro and imaging tools). FDA https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools (2022).
Feng, Y. et al. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 7, 6124–6136 (2018). PubMed DOI PMC
Gulati, S. & Vogelzang, N. J. Biomarkers in renal cell carcinoma: are we there yet? Asian J. Urol. 8, 362–375 (2021). PubMed DOI PMC
Parker, W. P. et al. Application of the stage, size, grade, and necrosis (SSIGN) score for clear cell renal cell carcinoma in contemporary patients. Eur. Urol. 71, 665–673 (2017). PubMed DOI
Patard, J.-J. et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study. J. Clin. Oncol. 22, 3316–3322 (2004). PubMed DOI
Fiala, O. et al. Outcomes according to MSKCC risk score with focus on the intermediate-risk group in metastatic renal cell carcinoma patients treated with first-line sunitinib: a retrospective analysis of 2390 patients. Cancers 12, 808 (2020). PubMed DOI PMC
Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970). PubMed DOI
Vazquez-Anderson, J. & Contreras, L. M. Regulatory RNAs. RNA Biol. 10, 1778–1797 (2013). PubMed DOI PMC
Zhang, Q. et al. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int. 23, 16 (2023). PubMed DOI PMC
Popławski, P., Bogusławska, J., Hanusek, K. & Piekiełko-Witkowska, A. Nucleolar proteins and non-coding RNAs: roles in renal cancer. Int. J. Mol. Sci. 22, 13126 (2021). PubMed DOI PMC
Chen, J. et al. LncRNAs act as prognostic and diagnostic biomarkers in renal cell carcinoma: a systematic review and meta-analysis. Oncotarget 7, 74325–74336 (2016). PubMed DOI PMC
Li, M. et al. Long non-coding RNAs in renal cell carcinoma: a systematic review and clinical implications. Oncotarget 8, 48424–48435 (2017). PubMed DOI PMC
Rysz, J., Konecki, T., Franczyk, B., Lawinski, J. & Gluba-Brzozka, A. The role of long noncoding RNA (lncRNAs) biomarkers in renal cell carcinoma. Int. J. Mol. Sci. 24, 643 (2023). DOI
Aliperti, V., Skonieczna, J. & Cerase, A. Long non-coding RNA (lncRNA) roles in cell biology, neurodevelopment and neurological disorders. Noncoding RNA 7, 36 (2021). PubMed PMC
Chen, L. et al. A transcriptional regulatory network containing nuclear receptors and long noncoding RNAs controls basal and drug-induced expression of cytochrome p450s in hepaRG cells. Mol. Pharmacol. 94, 749–759 (2018). PubMed DOI PMC
He, N. et al. The role of long non-coding RNA FGD5-AS1 in cancer. Bioengineered 13, 11026–11041 (2022). PubMed DOI PMC
Yang, W. et al. Identification and validation of the clinical roles of the VHL-related LncRNAs in clear cell renal cell carcinoma. J. Cancer 12, 2702–2714 (2021). PubMed DOI PMC
Yang, Y., Dong, M.-H., Hu, H.-M., Min, Q.-H. & Xiao, L. LncRNA FGD5-AS1/miR-5590-3p axis facilitates the proliferation and metastasis of renal cell carcinoma through ERK/AKT signalling. Eur. Rev. Med. Pharmacol. Sci. 24, 8756–8766 (2020). PubMed
Xiang, M. et al. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 454, 210–214 (2014). PubMed DOI
Duan, Z.-Y. et al. U6 can be used as a housekeeping gene for urinary sediment miRNA studies of IgA nephropathy. Sci. Rep. 8, 10875 (2018). PubMed DOI PMC
Lou, G. et al. Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. Int. J. Mol. Med. 36, 1400–1408 (2015). PubMed DOI
Zhang, C. et al. LINC00460 facilitates cell proliferation and inhibits ferroptosis in breast cancer through the miR-320a/MAL2 axis. Technol. Cancer Res. Treat. 22, 15330338231164360 (2023). DOI
Wang, X. et al. Upregulated expression of long non-coding RNA, LINC00460, suppresses proliferation of colorectal cancer. J. Cancer 9, 2834–2843 (2018). PubMed DOI PMC
Wang, X., Gan, X., Liu, C. & Zhang, W. LINC00460 accelerates progression of ovarian cancer by activating transcriptional factor ZNF703. Oncol. Lett. 19, 4189–4194 (2020). PubMed PMC
Dong, Y. & Quan, H.-Y. Downregulated LINC00460 inhibits cell proliferation and promotes cell apoptosis in prostate cancer. Eur. Rev. Med. Pharmacol. Sci. 23, 6070–6078 (2019). PubMed
Su, M. et al. Oncogenic roles of the lncRNA LINC00460 in human cancers. Cancer Cell Int. 22, 240 (2022). PubMed DOI PMC
Chen, X. et al. LncRNA LINC00460: function and mechanism in human cancer. Thorac. Cancer 13, 3–14 (2022). PubMed DOI
Zhou, F.-J. et al. LncRNA LINC00460 facilitates the proliferation and metastasis of renal cell carcinoma via PI3K/AKT signaling pathway. J. Cancer 13, 2844–2854 (2022). PubMed DOI PMC
Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat. Rev. Drug. Discov. 8, 627–644 (2009). PubMed DOI PMC
Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004). PubMed DOI
Sirico, M. et al. Current state and future challenges for PI3K inhibitors in cancer therapy. Cancers 15, 703 (2023). PubMed DOI PMC
Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018). PubMed DOI PMC
Wang, Y., Yan, K., Wang, L. & Bi, J. Genome instability-related long non-coding RNA in clear renal cell carcinoma determined using computational biology. BMC Cancer 21, 727 (2021). PubMed DOI PMC
Zhang, S., Zhang, F., Niu, Y. & Yu, S. Aberration of lncRNA LINC00460 is a promising prognosis factor and associated with progression of clear cell renal cell carcinoma. Cancer Manag. Res. 13, 6489–6497 (2021). PubMed DOI PMC
Zhang, D., Zeng, S. & Hu, X. Identification of a three-long noncoding RNA prognostic model involved competitive endogenous RNA in kidney renal clear cell carcinoma. Cancer Cell Int. 20, 319 (2020). PubMed DOI PMC
Cao, W., Zhang, H.-F., Ding, X.-L., Zhu, S.-Z. & Zhou, G.-X. The progression of pancreatic cancer cells is promoted by a long non-coding RNA LUCAT1 by activating AKT phosphorylation. Eur. Rev. Med. Pharmacol. Sci. 25, 738–748 (2021). PubMed
Zhang, L., Liu, S.-K., Song, L. & Yao, H.-R. SP1-induced up-regulation of lncRNA LUCAT1 promotes proliferation, migration and invasion of cervical cancer by sponging miR-181a. Artif. Cell. Nanomed. Biotechnol. 47, 556–564 (2019).
Jiao, Y., Li, Y., Ji, B., Cai, H. & Liu, Y. Clinical value of lncRNA LUCAT1 expression in liver cancer and its potential pathways. J. Gastrointest. Liver Dis. 28, 439 (2019). DOI
Xiao, H. et al. Long non-coding RNA Lucat1 is a poor prognostic factor and demonstrates malignant biological behavior in clear cell renal cell carcinoma. Oncotarget 8, 113622–113634 (2017). PubMed DOI PMC
Zheng, Z. et al. Long non-coding RNA LUCAT1 promotes proliferation and invasion in clear cell renal cell carcinoma through AKT/GSK-3β signaling pathway. Cell. Physiol. Biochem. 48, 891–904 (2018). PubMed DOI
Wang, X. et al. Long non-coding RNA LUCAT1 promotes the progression of clear cell renal cell carcinoma via the microRNA-375/YAP1 axis. Exp. Ther. Med. 22, 754 (2021). PubMed DOI PMC
Glatzel-Plucińska, N., Piotrowska, A., Dzięgiel, P. & Podhorska-Okołów, M. The role of SATB1 in tumour progression and metastasis. Int. J. Mol. Sci. 20, 4156 (2019). PubMed DOI PMC
Szulzewsky, F., Holland, E. C. & Vasioukhin, V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev. Biol. 475, 205–221 (2021). PubMed DOI PMC
Wang, L.-N., Zhu, X.-Q., Song, X.-S. & Xu, Y. Long noncoding RNA lung cancer associated transcript 1 promotes proliferation and invasion of clear cell renal cell carcinoma cells by negatively regulating miR-495-3p. J. Cell. Biochem. 119, 7599–7609 (2018). PubMed DOI
Xu, B. et al. LncRNA SNHG3, a potential oncogene in human cancers. Cancer Cell Int. 20, 536 (2020). PubMed DOI PMC
Yang, W. et al. Discovery and validation of the prognostic value of the lncRNAs encoding snoRNAs in patients with clear cell renal cell carcinoma. Aging 12, 4424–4444 (2020). PubMed DOI PMC
Zhang, C. et al. LncRNA SNHG3 promotes clear cell renal cell carcinoma proliferation and migration by upregulating TOP2A. Exp. Cell Res. 384, 111595 (2019). PubMed DOI
Xu, Z. et al. Long non-coding RNA SNHG3 promotes the progression of clear cell renal cell carcinoma via regulating BIRC5 expression. Transl. Cancer Res. 10, 4502–4513 (2021). PubMed DOI PMC
Zhang, C. et al. Prognostic and clinical significance of long non-coding RNA SNHG12 expression in various cancers. Bioengineered 11, 1112–1123 (2020). PubMed DOI PMC
Tamang, S. et al. SNHG12: an LncRNA as a potential therapeutic target and biomarker for human cancer. Front. Oncol. 9, 901 (2019). PubMed DOI PMC
Li, Z.-R. et al. Prognostic value of long noncoding RNA SNHG12 in various carcinomas: a meta-analysis. Biomed. Res. Int. 2020, 8847401 (2020). PubMed DOI PMC
Wu, Z., Chen, D., Wang, K., Cao, C. & Xu, X. Long non-coding RNA SNHG12 functions as a competing endogenous RNA to Regulate MDM4 expression by sponging miR-129-5p in clear cell renal cell carcinoma. Front. Oncol. 9, 1260 (2019). PubMed DOI PMC
Yu, H. et al. SNHG12 promotes carcinogenesis of human renal cell cancer via functioning as a competing endogenous RNA and sponging miR-30a-3p. J. Cell. Mol. Med. 25, 4696–4708 (2021). PubMed DOI PMC
Xu, C. et al. lncRNA small nucleolar RNA host gene 12 promotes renal cell carcinoma progression by modulating the miR-200c-5p/collagen type XI α1 chain pathway. Mol. Med. Rep. 22, 3677–3686 (2020). PubMed PMC
Chen, Q. et al. Overexpression of SNHG12 regulates the viability and invasion of renal cell carcinoma cells through modulation of HIF1α. Cancer Cell Int. 19, 128 (2019). PubMed DOI PMC
Liu, Y. et al. Long noncoding RNA SNHG12 promotes tumour progression and sunitinib resistance by upregulating CDCA3 in renal cell carcinoma. Cell Death Dis. 11, 1–17 (2020).
Zhao, W. et al. SNHG20: a vital lncRNA in multiple human cancers. J. Cell. Physiol. 234, 14519–14525 (2019). PubMed DOI
Liu, S., Zhou, H., Wang, G. & Lian, X. Comprehensive transcriptomic analysis of critical RNA regulation associated with metabolism and prognosis in clear cell renal carcinoma. Front. Cell Dev. Biol. 9, 709490 (2021). PubMed DOI PMC
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001). PubMed DOI
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001). PubMed DOI
Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001). PubMed DOI
Karp, X. & Ambros, V. Encountering microRNAs in cell fate signaling. Science 310, 1288–1289 (2005). PubMed DOI
Cheng, A. M., Byrom, M. W., Shelton, J. & Ford, L. P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297 (2005). PubMed DOI PMC
Chen, C.-Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004). PubMed DOI
Linxweiler, J. & Junker, K. Extracellular vesicles in urological malignancies: an update. Nat. Rev. Urol. 17, 11–27 (2020). PubMed DOI
Shao, Y. et al. MicroRNA-1251-5p promotes carcinogenesis and autophagy via targeting the tumor suppressor TBCC in ovarian cancer cells. Mol. Ther. 27, 1653–1664 (2019). PubMed DOI PMC
Ping, M., Wang, S., Chen, Y. & Jia, J. The short non-coding RNA 1251-5p regulates sternness transformation and inhibits aggression of lung malignant tumor cells. J. Biomater. Tissue Eng. 11, 982–989 (2021). DOI
Yue, L. et al. miR-1251-5p overexpression inhibits proliferation, migration, and immune escape in clear cell renal cell carcinoma by targeting NPTX2. J. Oncol. 2022, 3058588 (2022). PubMed DOI PMC
Xiao, M.-F. et al. NPTX2 and cognitive dysfunction in Alzheimer’s Disease. eLife 6, e23798 (2017). DOI
Li, N., Cui, T., Guo, W., Wang, D. & Mao, L. MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. OncoTargets Ther. 12, 3181–3196 (2019). DOI
Chen, H. et al. Mir-155-5p promote tumor immunity by regulating Pd-L1 expression in lung cancer cells. Acta Med. Mediterr. 36, 2385–2390 (2020).
Shen, Y., Zhang, M., Da, L., Huang, W. & Zhang, C. Circular RNA circ_SETD2 represses breast cancer progression via modulating the miR-155-5p/SCUBE2 axis. Open. Med. 15, 940–953 (2020). DOI
Wu, J. et al. A novel miRNA-based model can predict the prognosis of clear cell renal cell carcinoma. Technol. Cancer Res. Treat. 20, 15330338211027924 (2021). DOI
Landolt, L. et al. Clear cell renal cell carcinoma is linked to epithelial-to-mesenchymal transition and to fibrosis. Physiol. Rep. 5, e13305 (2017). PubMed DOI PMC
Zhou, X. et al. Comprehensive analysis of PTEN-related ceRNA network revealing the key pathways WDFY3-AS2–miR-21-5p/miR-221-3p/miR-222-3p–TIMP3 as potential biomarker in tumorigenesis and prognosis of kidney renal clear cell carcinoma. Mol. Carcinog. 61, 508–523 (2022). PubMed DOI
Zhou, Q., Zhang, Z.-Y., Ang, X.-J., Hu, C. & Ouyang, J. Construction of five microRNAs prognostic markers and a prognostic model for clear cell renal cell carcinoma. Transl. Cancer Res. 10, 2337–2353 (2021). PubMed DOI PMC
Osanto, S. et al. Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS ONE 7, e38298 (2012). PubMed DOI PMC
Wu, H. et al. miR-155-5p promotes cell proliferation and migration of clear cell renal cell carcinoma by targeting PEG3. Urol. Int. 105, 906–915 (2021). PubMed DOI
Zhao, Y., Tao, Z. & Chen, X. Identification of the miRNA-mRNA regulatory pathways and a miR-21-5p based nomogram model in clear cell renal cell carcinoma. PeerJ 8, e10292 (2020). PubMed DOI PMC
Lei, Q.-Q., Huang, Y., Li, B., Han, L. & Lv, C. MiR-155-5p promotes metastasis and epithelial-mesenchymal transition of renal cell carcinoma by targeting apoptosis-inducing factor. Int. J. Biol. Markers 36, 20–27 (2021). PubMed DOI
Relaix, F. et al. Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 97, 2105–2110 (2000). PubMed DOI PMC
Kalantzakos, T. et al. MicroRNA-155-5p targets JADE-1, promoting proliferation, migration, and invasion in clear cell renal cell carcinoma cells. Int. J. Mol. Sci. 24, 7825 (2023). PubMed DOI PMC
Strauss, P. et al. Expanding the utilization of formalin-fixed, paraffin-embedded archives: feasibility of mir-seq for disease exploration and biomarker development from biopsies with clear cell renal cell carcinoma. Int. J. Mol. Sci. 19, 803 (2018). PubMed DOI PMC
Sequeira, J. P. et al. LiKidMiRs: a ddPCR-based panel of 4 circulating miRNAs for detection of renal cell carcinoma. Cancers 14, 858 (2022). PubMed DOI PMC
Chen, S. et al. miR-21-5p suppressed the sensitivity of hepatocellular carcinoma cells to cisplatin by targeting FASLG. DNA Cell Biol. 38, 865–873 (2019). PubMed DOI
Jin, X.-H., Lu, S. & Wang, A.-F. Expression and clinical significance of miR-4516 and miR-21-5p in serum of patients with colorectal cancer. BMC Cancer 20, 241 (2020). PubMed DOI PMC
Zhou, X., Liu, H., Pang, Y., Wang, M. & Liu, S. UTMD-mediated delivery of miR-21-5p inhibitor suppresses the development of lung cancer. Tissue Cell 74, 101719 (2022). PubMed DOI
Fang, S. et al. Curcumol inhibits the growth of xenograft-tumors in mice and the biological activities of pancreatic cancer cells by regulating the miR-21-5p/SMAD7 axis. Cell Cycle 21, 1249–1266 (2022). PubMed DOI PMC
Kowalczyk, A. E. et al. SATB1 is down-regulated in clear cell renal cell carcinoma and correlates with miR-21-5p overexpression and poor prognosis. Cancer Genomics Proteom. 13, 209–217 (2016).
Meng, B. et al. miR-21-5p serves as a promoter in renal cell carcinoma progression through ARHGAP24 downregulation. Environ. Sci. Pollut. Res. 29, 39985–39993 (2022). DOI
Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998). PubMed DOI
Zhang, Z. et al. The miRNA-21-5p payload in exosomes from M2 macrophages drives tumor cell aggression via PTEN/Akt signaling in renal cell carcinoma. Int. J. Mol. Sci. 23, 3005 (2022). PubMed DOI PMC
Chen, S. et al. Macrophages in immunoregulation and therapeutics. Signal. Transduct. Target. Ther. 8, 207 (2023). PubMed DOI PMC
Xie, M. et al. Cuproptosis-related MiR-21-5p/FDX1 axis in clear cell renal cell carcinoma and its potential impact on tumor microenvironment. Cells 12, 173 (2022). PubMed DOI PMC
Gowrishankar, B. et al. MicroRNA expression signatures of stage, grade, and progression in clear cell RCC. Cancer Biol. Ther. 15, 329–341 (2014). PubMed DOI
Chen, X. et al. Identification of a four-microRNA panel in serum for screening renal cell carcinoma. Pathol. Res. Pract. 227, 153625 (2021). PubMed DOI
Han, P. et al. Epigenetic inactivation of ACAT1 promotes epithelial-mesenchymal transition of clear cell renal cell carcinoma. Genes. Genomics 44, 487–497 (2022). PubMed DOI
Yao, W. et al. MiR-30a-5p enhances cisplatin sensitivity by downregulating RIF1 in ovarian cancer. Ann. Clin. Lab. Sci. 53, 418–426 (2023). PubMed
Zhao, H. et al. MiR-30a-5p frequently downregulated in prostate cancer inhibits cell proliferation via targeting PCLAF. Artif. Cell Nanomed. Biotechnol. 47, 278–289 (2019). DOI
Wei, W. et al. MiR-30a-5p suppresses tumor metastasis of human colorectal cancer by targeting ITGB3. Cell Physiol. Biochem. 39, 1165–1176 (2016). PubMed DOI
Zhou, L. et al. Down-regulation of miR-30a-5p is associated with poor prognosis and promotes chemoresistance of gemcitabine in pancreatic ductal adenocarcinoma. J. Cancer 10, 5031–5040 (2019). PubMed DOI PMC
Outeiro-Pinho, G. et al. MicroRNA-30a-5pme: a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. J. Exp. Clin. Cancer Res. 39, 98 (2020). PubMed DOI PMC
Wang, C. et al. MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression. Cell Physiol. Biochem. 43, 2405–2419 (2017). PubMed DOI
Chen, Z. et al. The putative tumor suppressor microRNA-30a-5p modulates clear cell renal cell carcinoma aggressiveness through repression of ZEB2. Cell Death Dis. 8, e2859 (2017). PubMed DOI PMC
Falaleeva, M. & Stamm, S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 35, 46–54 (2013). PubMed DOI
Dieci, G., Preti, M. & Montanini, B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94, 83–88 (2009). PubMed DOI
Su, H. et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 33, 1348–1358 (2014). PubMed DOI
Gao, L. et al. Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int. J. Cancer 136, E623–E629 (2015). PubMed DOI
Crea, F. et al. Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Mol. Oncol. 10, 693–703 (2016). PubMed DOI
Zhang, L., Xin, M. & Wang, P. Identification of a novel snoRNA expression signature associated with overall survival in patients with lung adenocarcinoma: a comprehensive analysis based on RNA sequencing dataset. Math. Biosci. Eng. 18, 7837–7860 (2021). PubMed DOI
Li, J.-N., Wang, M.-Y., Chen, Y.-T., Kuo, Y.-L. & Chen, P.-S. Expression of SnoRNA U50A is associated with better prognosis and prolonged mitosis in breast cancer. Cancers 13, 6304 (2021). PubMed DOI PMC
van der Werf, J., Chin, C. V. & Fleming, N. I. SnoRNA in cancer progression, metastasis and immunotherapy response. Biology 10, 809 (2021). PubMed DOI PMC
Huang, Z., Du, Y., Wen, J., Lu, B. & Zhao, Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 8, 259 (2022). PubMed DOI PMC
Dong, W. et al. Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin. Transl. Med. 11, e411 (2021). PubMed DOI PMC
Tian, B. et al. Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal squamous cell carcinoma via nucleus partitioning of PP-1 alpha. Oncogene 40, 3734–3747 (2021). PubMed DOI
Wang, K. et al. Plasma SNORD42B and SNORD111 as potential biomarkers for early diagnosis of non-small cell lung cancer. J. Clin. Lab. Anal. 36, e24740 (2022). PubMed DOI PMC
Huang, R., Liao, X. & Li, Q. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia. Math. Biosci. Eng. 19, 2424–2452 (2022). PubMed DOI
Zhao, Y. et al. Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J. Cell Mol. Med. 24, 2215–2228 (2020). PubMed DOI PMC
Patterson, D. G. et al. Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast cancer cell invasion. NPJ Breast Cancer 3, 25 (2017). PubMed DOI PMC
Yoon, J. K., Kim, D. H. & Koo, J. S. Implications of differences in expression of sarcosine metabolism-related proteins according to the molecular subtype of breast cancer. J. Transl. Med. 12, 149 (2014). PubMed DOI PMC
Escuin, D. et al. Small non-coding RNAs and their role in locoregional metastasis and outcomes in early-stage breast cancer patients. Int. J. Mol. Sci. 25, 3982 (2024). PubMed DOI PMC
Weng, L. et al. MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J. Pathol. 222, 41–51 (2010). PubMed DOI
Müller, S. & Nowak, K. Exploring the miRNA-mRNA regulatory network in clear cell renal cell carcinomas by next-generation sequencing expression profiles. Biomed. Res. Int. 2014, 948408 (2014). PubMed DOI PMC
Tóth, K. F., Pezic, D., Stuwe, E. & Webster, A. The piRNA pathway guards the germline genome against transposable elements. Adv. Exp. Med. Biol. 886, 51–77 (2016). PubMed DOI PMC
Guo, B., Li, D., Du, L. & Zhu, X. piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 39, 567–575 (2020). PubMed DOI
Li, Y. et al. Piwi-Interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol. Med. 21, 381–388 (2015). PubMed DOI PMC
Ding, L. et al. PIWI-interacting RNA 57125 restrains clear cell renal cell carcinoma metastasis by downregulating CCL3 expression. Cell Death Discov. 7, 333 (2021). PubMed DOI PMC
Jia, S.-N., Han, Y.-B., Yang, R. & Yang, Z.-C. Chemokines in colon cancer progression. Semin. Cancer Biol. 86, 400–407 (2022). PubMed DOI
Baba, T. & Mukaida, N. Role of macrophage inflammatory protein (MIP)-1α/CCL3 in leukemogenesis. Mol. Cell Oncol. 1, e29899 (2014). PubMed DOI PMC
Korbecki, J. et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int. J. Mol. Sci. 21, 8412 (2020). PubMed DOI PMC
Zhao, C. et al. Mitochondrial PIWI-interacting RNAs are novel biomarkers for clear cell renal cell carcinoma. World J. Urol. 37, 1639–1647 (2019). PubMed DOI
Busch, J. et al. Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J. Exp. Clin. Cancer Res. 34, 61 (2015). PubMed DOI PMC
Iliev, R. et al. Decreased expression levels of PIWIL1, PIWIL2, and PIWIL4 are associated with worse survival in renal cell carcinoma patients. OncoTargets Ther. 9, 217–222 (2016).
Orellana, E. A., Siegal, E. & Gregory, R. tRNA dysregulation and disease. Nat. Rev. Genet. 23, 651–664 (2022). PubMed DOI PMC
Nientiedt, M. et al. Identification of aberrant tRNA-halves expression patterns in clear cell renal cell carcinoma. Sci. Rep. 6, 37158 (2016). PubMed DOI PMC
Zhao, C. et al. 5’-tRNA halves are dysregulated in clear cell renal cell carcinoma. J. Urol. 199, 378–383 (2018). PubMed DOI
National Cancer Institute. Clear cell renal cell carcinoma. NIH https://www.cancer.gov/pediatric-adult-rare-tumor/rare-tumors/rare-kidney-tumors/clear-cell-renal-cell-carcinoma (2020).
Dabestani, S. et al. Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a population-based study. World J. Urol. 34, 1081–1086 (2016). PubMed DOI
Strauss, P. et al. A multiomics disease progression signature of low-risk ccRCC. Sci. Rep. 12, 13503 (2022). PubMed DOI PMC
Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97, 1663–1671 (2003). PubMed DOI
Lakshminarayanan, H., Rutishauser, D., Schraml, P., Moch, H. & Bolck, H. A. Liquid biopsies in renal cell carcinoma-recent advances and promising new technologies for the early detection of metastatic disease. Front. Oncol. 10, 582843 (2020). PubMed DOI PMC
Li, R. et al. A four-microRNA panel in serum may serve as potential biomarker for renal cell carcinoma diagnosis. Front. Oncol. 12, 1076303 (2023). PubMed DOI PMC
Lukamowicz-Rajska, M. et al. MiR-99b-5p expression and response to tyrosine kinase inhibitor treatment in clear cell renal cell carcinoma patients. Oncotarget 7, 78433–78447 (2016). PubMed DOI PMC
Pastore, A. L. et al. Serum and urine biomarkers for human renal cell carcinoma. Dis. Markers 2015, 251403 (2015). PubMed DOI PMC
Nolazco, J. I., Soerensen, S. J. C. & Chung, B. I. Biomarkers for the detection and surveillance of renal cancer. Urol. Clin. North. Am. 50, 191–204 (2023). PubMed DOI
Zieren, R. C. et al. Diagnostic liquid biopsy biomarkers in renal cell cancer. Nat. Rev. Urol. 21, 133–157 (2024). PubMed DOI
Li, C. S., Lu, Z. Z., Fang, D. L., Zhou, W. J. & Wei, J. Immune-related long non-coding RNAs can serve as prognostic biomarkers for clear cell renal cell carcinoma. Transl. Androl. Urol. 10, 2478–2492 (2021). PubMed DOI PMC
Xin, S. et al. A cuproptosis-related lncRNA signature identified prognosis and tumour immune microenvironment in kidney renal clear cell carcinoma. Front. Mol. Biosci. 9, 974722 (2022). PubMed DOI PMC
Gao, L., Zhao, A. & Wang, X. Upregulation of lncRNA AGAP2-AS1 is an independent predictor of poor survival in patients with clear cell renal carcinoma. Oncol. Lett. 19, 3993–4001 (2020). PubMed PMC
Wang, C. et al. The downregulated long noncoding RNA DHRS4-AS1 is protumoral and associated with the prognosis of clear cell renal cell carcinoma. OncoTargets Ther. 11, 5631–5646 (2018). DOI
Li, J., Li, Y., He, X. & Zhao, Q. Gain of GAS5 reveals worse prognosis in kidney renal clear cell carcinoma and liver hepatocellular carcinoma from the Cancer Genome Atlas dataset. Transl. Cancer Res. 10, 223–232 (2021). PubMed DOI PMC
Deng, Y. et al. Identification and experimental validation of a tumor-infiltrating lymphocytes-related long noncoding RNA signature for prognosis of clear cell renal cell carcinoma. Front. Immunol. 13, 1046790 (2022). PubMed DOI PMC
Liu, H. et al. A panel of Four-lncRNA signature as a potential biomarker for predicting survival in clear cell renal cell carcinoma. J. Cancer 11, 4274–4283 (2020). PubMed DOI PMC
Wang, G. et al. Novel long noncoding RNA OTUD6B-AS1 indicates poor prognosis and inhibits clear cell renal cell carcinoma proliferation via the Wnt/β-catenin signaling pathway. Mol. Cancer 18, 15 (2019). PubMed DOI PMC
Cui, Y., Wu, J., Zhou, Z., Ma, J. & Dong, L. Two novel lncRNAs AF111167.2 and AL162377.1 targeting miR-21-5p mediated down expression of SYDE2 correlates with poor prognosis and tumor immune infiltration of ccRCC. Heliyon 8, e11079 (2022). PubMed DOI PMC
Zhao, P. et al. Long noncoding RNA SNHG6 promotes carcinogenesis by enhancing YBX1-mediated translation of HIF1α in clear cell renal cell carcinoma. FASEB J. 35, e21160 (2021). PubMed DOI
Zhan, Y. et al. A microRNA-clinical prognosis model to predict the overall survival for kidney renal clear cell carcinoma. Cancer Med. 10, 6128–6139 (2021). PubMed DOI PMC
Luo, Y. et al. Identification of a three-miRNA signature as a novel potential prognostic biomarker in patients with clear cell renal cell carcinoma. J. Cell. Biochem. 120, 13751–13764 (2019). PubMed DOI
Li, X. et al. Integrated analysis of microRNA (miRNA) and mRNA profiles reveals reduced correlation between microrna and target gene in cancer. Biomed. Res. Int. 2018, 1972606 (2018). PubMed DOI PMC
Liu, Y. & Qu, H.-C. miR-138-5p inhibits proliferation and invasion in kidney renal clear cell carcinoma by targeting SINA3 and regulation of the Notch signaling pathway. J. Clin. Lab. Anal. 35, e23766 (2021). PubMed DOI PMC
Ge, Y.-Z. et al. A tumor-specific microRNA signature predicts survival in clear cell renal cell carcinoma. J. Cancer Res. Clin. Oncol. 141, 1291–1299 (2015). PubMed DOI
Wang, Z., Zhang, Z., Zhang, C. & Xu, Y. Identification of potential pathogenic biomarkers in clear cell renal cell carcinoma. Oncol. Lett. 15, 8491–8499 (2018). PubMed PMC
Lu, J., Tan, T., Zhu, L., Dong, H. & Xian, R. Hypomethylation causes MIR21 overexpression in tumors. Mol. Ther. Oncolytics 18, 47–57 (2020). PubMed DOI PMC
Luo, Y. & Zhang, G. Identification of a necroptosis-related prognostic index and associated regulatory axis in kidney renal clear cell carcinoma. Int. J. Gen. Med. 15, 5407–5423 (2022). PubMed DOI PMC