Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells

M. Rampichová, J. Chvojka, M. Buzgo, E. Prosecká, P. Mikeš, L. Vysloužilová, D. Tvrdík, P. Kochová, T. Gregor, D. Lukáš, E. Amler,

. 2013 ; 46 (1) : 23-37.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc13012347

Grantová podpora
NT12156 MZ0 CEP - Centrální evidence projektů

OBJECTIVES: We prepared 3D poly (ε-caprolactone) (PCL) nanofibre scaffolds and tested their use for seeding, proliferation, differentiation and migration of mesenchymal stem cell (MSCs). MATERIALS AND METHODS: 3D nanofibres were prepared using a special collector for common electrospinning; simultaneously, a 2D PCL nanofibre layer was prepared using a classic plain collector. Both scaffolds were seeded with MSCs and biologically tested. MSC adhesion, migration, proliferation and osteogenic differentiation were investigated. RESULTS: The 3D PCL scaffold was characterized by having better biomechanical properties, namely greater elasticity and resistance against stress and strain, thus this scaffold will be able to find broad applications in tissue engineering. Clearly, while nanofibre layers of the 2D scaffold prevented MSCs from migrating through the conformation, cells infiltrated freely through the 3D scaffold. MSC adhesion to the 3D nanofibre PCL layer was also statistically more common than to the 2D scaffold (P < 0.05), and proliferation and viability of MSCs 2 or 3 weeks post-seeding, were also greater on the 3D scaffold. In addition, the 3D PCL scaffold was also characterized by displaying enhanced MSC osteogenic differentiation. CONCLUSIONS: We draw the conclusion that all positive effects observed using the 3D PCL nanofibre scaffold are related to the larger fibre surface area available to the cells. Thus, the proposed 3D structure of the nanofibre layer will find a wide array of applications in tissue engineering and regenerative medicine.

000      
00000naa a2200000 a 4500
001      
bmc13012347
003      
CZ-PrNML
005      
20191021094201.0
007      
ta
008      
130404s2013 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/cpr.12001 $2 doi
035    __
$a (PubMed)23216517
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Rampichová, Michala $u Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Videnska 1083, 142 40, Prague, Czech Republic. m.rampichova@biomed.cas.cz $7 xx0171325
245    10
$a Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells / $c M. Rampichová, J. Chvojka, M. Buzgo, E. Prosecká, P. Mikeš, L. Vysloužilová, D. Tvrdík, P. Kochová, T. Gregor, D. Lukáš, E. Amler,
520    9_
$a OBJECTIVES: We prepared 3D poly (ε-caprolactone) (PCL) nanofibre scaffolds and tested their use for seeding, proliferation, differentiation and migration of mesenchymal stem cell (MSCs). MATERIALS AND METHODS: 3D nanofibres were prepared using a special collector for common electrospinning; simultaneously, a 2D PCL nanofibre layer was prepared using a classic plain collector. Both scaffolds were seeded with MSCs and biologically tested. MSC adhesion, migration, proliferation and osteogenic differentiation were investigated. RESULTS: The 3D PCL scaffold was characterized by having better biomechanical properties, namely greater elasticity and resistance against stress and strain, thus this scaffold will be able to find broad applications in tissue engineering. Clearly, while nanofibre layers of the 2D scaffold prevented MSCs from migrating through the conformation, cells infiltrated freely through the 3D scaffold. MSC adhesion to the 3D nanofibre PCL layer was also statistically more common than to the 2D scaffold (P < 0.05), and proliferation and viability of MSCs 2 or 3 weeks post-seeding, were also greater on the 3D scaffold. In addition, the 3D PCL scaffold was also characterized by displaying enhanced MSC osteogenic differentiation. CONCLUSIONS: We draw the conclusion that all positive effects observed using the 3D PCL nanofibre scaffold are related to the larger fibre surface area available to the cells. Thus, the proposed 3D structure of the nanofibre layer will find a wide array of applications in tissue engineering and regenerative medicine.
650    _2
$a buněčné kultury $x přístrojové vybavení $x metody $7 D018929
650    12
$a buněčná diferenciace $7 D002454
650    _2
$a pohyb buněk $7 D002465
650    _2
$a proliferace buněk $7 D049109
650    _2
$a viabilita buněk $7 D002470
650    _2
$a kultivované buňky $7 D002478
650    _2
$a pružnost $7 D004548
650    _2
$a lidé $7 D006801
650    _2
$a sialoprotein vázající integrin $x metabolismus $7 D058574
650    _2
$a mezenchymální kmenové buňky $x cytologie $x metabolismus $7 D059630
650    _2
$a nanovlákna $x chemie $x ultrastruktura $7 D057139
650    _2
$a osteokalcin $x metabolismus $7 D015675
650    _2
$a osteogeneze $7 D010012
650    _2
$a polyestery $x chemie $7 D011091
650    _2
$a regenerativní lékařství $7 D044968
650    _2
$a povrchové vlastnosti $7 D013499
650    _2
$a tkáňové inženýrství $7 D023822
650    12
$a tkáňové podpůrné struktury $7 D054457
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Chvojka, Jiří $u -
700    1_
$a Buzgo, Matej $u - $7 xx0255533
700    1_
$a Prosecká, Eva $u - $7 xx0171465
700    1_
$a Mikeš, Petr $u - $7 _AN080739
700    1_
$a Vysloužilová, Lucie $u -
700    1_
$a Tvrdík, D $u -
700    1_
$a Kochová, Petra $u - $7 _AN047718
700    1_
$a Gregor, T $u -
700    1_
$a Lukáš, David, $u - $d 1958- $7 xx0000188
700    1_
$a Amler, Evžen, $u - $d 1958- $7 xx0014074
773    0_
$w MED00001074 $t Cell proliferation $x 1365-2184 $g Roč. 46, č. 1 (2013), s. 23-37
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23216517 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20130404 $b ABA008
991    __
$a 20191021094634 $b ABA008
999    __
$a ok $b bmc $g 975545 $s 810628
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 46 $c 1 $d 23-37 $i 1365-2184 $m Cell proliferation $n Cell Prolif $x MED00001074
GRA    __
$a NT12156 $p MZ0
LZP    __
$a Pubmed-20130404

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...