Computational Approach for Spatially Fractionated Radiation Therapy (SFRT) and Immunological Response in Precision Radiation Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38673063
PubMed Central
PMC11051362
DOI
10.3390/jpm14040436
PII: jpm14040436
Knihovny.cz E-zdroje
- Klíčová slova
- Spatially Fractionated Radiation Therapy, immunotherapy, in-silico model, mathematical framework, radiotherapy,
- Publikační typ
- časopisecké články MeSH
The field of precision radiation therapy has seen remarkable advancements in both experimental and computational methods. Recent literature has introduced various approaches such as Spatially Fractionated Radiation Therapy (SFRT). This unconventional treatment, demanding high-precision radiotherapy, has shown promising clinical outcomes. A comprehensive computational scheme for SFRT, extrapolated from a case report, is proposed. This framework exhibits exceptional flexibility, accommodating diverse initial conditions (shape, inhomogeneity, etc.) and enabling specific choices for sub-volume selection with administrated higher radiation doses. The approach integrates the standard linear quadratic model and, significantly, considers the activation of the immune system due to radiotherapy. This activation enhances the immune response in comparison to the untreated case. We delve into the distinct roles of the native immune system, immune activation by radiation, and post-radiotherapy immunotherapy, discussing their implications for either complete recovery or disease regrowth.
Faculty of Mathematics and Physics Charles University 5 Holešovičkách 2 18000 Prague Czech Republic
INFN Sezione di Catania Via Santa Sofia 64 95123 Catania Italy
Istituto Oncologico del Mediterraneo Via Penninazzo 7 95029 Viagrande Italy
Zobrazit více v PubMed
Tubin S., Vozenin M., Prezado Y., Durante M., Prise K., Lara P., Greco C., Massaccesi M., Guha C., Wu X., et al. Novel unconventional radiotherapy techniques: Current status and future perspectives—Report from the 2nd international radiation oncology online seminar. Clin. Transl. Radiat. Oncol. 2023;40:100605. doi: 10.1016/j.ctro.2023.100605. PubMed DOI PMC
Ferini G., Parisi S., Lillo S., Viola A., Minutoli F., Critelli P., Valenti V., Illari S.I., Brogna A., Umana G.E., et al. Impressive results after “metabolism-guided” lattice irradiation in patients submitted to palliative radiation therapy: Preliminary results of LATTICE_01 Multicenter Study. Cancers. 2022;14:3909. doi: 10.3390/cancers14163909. PubMed DOI PMC
Zhang W., Lin Y., Wang F., Badkul R., Chen R.C., Gao H. Lattice position optimization for LATTICE therapy. Med. Phys. 2023;50:7359–7367. doi: 10.1002/mp.16572. PubMed DOI PMC
Ferini G., Zagardo V., Pergolizzi S. To answer Spałek’s question: Lattice radiotherapy is more hope than hype. Ann. Palliat. Med. 2023;12:1106108. doi: 10.21037/apm-23-63. PubMed DOI
Ferini G., Valenti V., Viola A., Umana G.E., Illari S.I., Parisi S., Pontoriero A., Pergolizzi S. First-ever Clinical Experience with Magnetic Resonance-based Lattice Radiotherapy for Treating Bulky Gynecological Tumors. Anticancer Res. 2022;42:4641–4646. doi: 10.21873/anticanres.15968. PubMed DOI
Tubin S., Khan M.K., Salerno G., Mourad W.F., Yan W., Jeremic B. Mono-institutional phase 2 study of innovative Stereotactic Body RadioTherapy targeting PArtial Tumor HYpoxic (SBRT-PATHY) clonogenic cells in unresectable bulky non-small cell lung cancer: Profound non-targeted effects by sparing peri-tumoral immune microenvironment. Radiat. Oncol. 2019;14:212. PubMed PMC
Ferini G., Castorina P., Valenti V., Illari S.I., Sachpazidis I., Castorina L., Marrale M., Pergolizzi S. A novel radiotherapeutic approach to treat bulky metastases even from cutaneous squamous cell carcinoma: Its rationale and a look at the reliability of the linear-quadratic model to explain its radiobiological effects. Front. Oncol. 2022;12:809279. doi: 10.3389/fonc.2022.809279. PubMed DOI PMC
Parisi S., Napoli I., Lillo S., Cacciola A., Ferini G., Iatì G., Pontoriero A., Tamburella C., Davì V., Pergolizzi S. Spine eburnation in a metastatic lung cancer patient treated with immunotherapy and radiotherapy. The first case report of bystander effect on bone. J. Oncol. Pharm. Pract. 2022;28:237–241. doi: 10.1177/10781552211027348. PubMed DOI
Tubin S., Gupta S., Grusch M., Popper H.H., Brcic L., Ashdown M.L., Khleif S.N., Peter-Vörösmarty B., Hyden M., Negrini S., et al. Shifting the immune-suppressive to predominant immune-stimulatory radiation effects by SBRT-PArtial tumor irradiation targeting HYpoxic segment (SBRT-PATHY) Cancers. 2020;13:50. doi: 10.3390/cancers13010050. PubMed DOI PMC
Bertho A., Iturri L., Prezado Y. Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. Int. Rev. Cell Mol. Biol. 2023;376:37–68. PubMed
Cytlak U.M., Dyer D.P., Honeychurch J., Williams K.J., Travis M.A., Illidge T.M. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat. Rev. Immunol. 2022;22:124–138. doi: 10.1038/s41577-021-00568-1. PubMed DOI
Norton L. A Gompertzian model of human breast cancer growth. Cancer Res. 1988;48:7067–7071. PubMed
Vaghi C., Rodallec A., Fanciullino R., Ciccolini J., Mochel J.P., Mastri M., Poignard C., Ebos J.M., Benzekry S. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 2020;16:e1007178. doi: 10.1371/journal.pcbi.1007178. PubMed DOI PMC
Zhao X., Shao C. Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers. 2020;12:2762. doi: 10.3390/cancers12102762. PubMed DOI PMC
Puglisi C., Giuffrida R., Borzì G., Di Mattia P., Costa A., Colarossi C., Deiana E., Picardo M., Colarossi L., Mare M., et al. Radiosensitivity of Cancer Stem Cells Has Potential Predictive Value for Individual Responses to Radiotherapy in Locally Advanced Rectal Cancer. Cancers. 2020;12:3672. doi: 10.3390/cancers12123672. PubMed DOI PMC
Puglisi C., Giuffrida R., Borzì G., Illari S., Caronia F., Di Mattia P., Colarossi C., Ferini G., Martorana E., Sette G., et al. Ex Vivo Irradiation of Lung Cancer Stem Cells Identifies the Lowest Therapeutic Dose Needed for Tumor Growth Arrest and Mass Reduction In Vivo. Front. Oncol. 2022;12:837400. doi: 10.3389/fonc.2022.837400. PubMed DOI PMC
Ngwa W., Irabor O., Schoenfeld J., Hesser J., Demaria S., Formenti S. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer. 2018;18:313–322. doi: 10.1038/nrc.2018.6. PubMed DOI PMC
Mole R. Whole body irradiation; radiobiology or medicine? Br. J. Radiol. 1953;26:234–241. doi: 10.1259/0007-1285-26-305-234. PubMed DOI
Demaria S., Ng B., Devitt M., Babb J., Kawashima N., Liebes L., Formenti S. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 2004;58:862–870. doi: 10.1016/j.ijrobp.2003.09.012. PubMed DOI
Quantitative Method for Monitoring Tumor Evolution During and After Therapy