Pharmaceutical Pollution Alters the Structure of Freshwater Communities and Hinders Their Recovery from a Fish Predator
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39049184
PubMed Central
PMC11308527
DOI
10.1021/acs.est.4c02807
Knihovny.cz E-zdroje
- Klíčová slova
- chemical contaminants, fluoxetine, invasive species, pharmaceuticals, primary productivity,
- MeSH
- chemické látky znečišťující vodu * MeSH
- Cyprinodontiformes MeSH
- ekosystém MeSH
- fluoxetin MeSH
- potravní řetězec MeSH
- ryby MeSH
- sladká voda * chemie MeSH
- zooplankton * účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- fluoxetin MeSH
Freshwater ecosystems are under threat from rising pharmaceutical pollution. While such pollutants are known to elicit biological effects on organisms, we have limited knowledge on how these effects might cascade through food-webs, disrupt ecological processes, and shape freshwater communities. In this study, we used a mesocosm experiment to explore how the community impacts of a top-order predator, the eastern mosquitofish (Gambusia holbrooki), are mediated by exposure to environmentally relevant low (measured concentration: ∼10 ng/L) and high concentrations (∼110 ng/L) of the pervasive pharmaceutical pollutant fluoxetine. We found no evidence that exposure to fluoxetine altered the consumptive effects of mosquitofish on zooplankton. However, once mosquitofish were removed from the mesocosms, zooplankton abundance recovered to a greater extent in control mesocosms compared to both low and high fluoxetine-exposed mesocosms. By the end of the experiment, this resulted in fundamental differences in community structure between the control and fluoxetine-treated mesocosms. Specifically, the control mesocosms were characterized by higher zooplankton abundances and lower algal biomass, whereas mesocosms exposed to either low or high concentrations of fluoxetine had lower zooplankton abundances and higher algal biomass. Our results suggest that fluoxetine, even at very low concentrations, can alter aquatic communities and hinder their recovery from disturbances.
Australian Waterlife 55 Vaughan Chase Wyndham Vale Victoria 3024 Australia
Department of Zoology Stockholm University Stockholm 114 18 Sweden
Environmental Protection Authority Victoria EPA Science Macleod Victoria 3085 Australia
Institute of Zoology Zoological Society of London London NW1 4RY U K
School of Biological Sciences Monash University Melbourne 3800 Australia
School of Environment and Science Griffith University Nathan 4111 Australia
Water Studies Centre School of Chemistry Monash University Melbourne 3800 Australia
Zobrazit více v PubMed
Reid A. J.; Carlson A. K.; Creed I. F.; Eliason E. J.; Gell P. A.; Johnson P. T. J.; Kidd K. A.; MacCormack T. J.; Olden J. D.; Ormerod S. J.; Smol J. P.; Taylor W. W.; Tockner K.; Vermaire J. C.; Dudgeon D.; Cooke S. J. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity: Emerging Threats to Freshwater Biodiversity. Biol. Rev. Cambridge Philos. Soc. 2019, 94 (3), 849–873. 10.1111/brv.12480. PubMed DOI
Haase P.; Bowler D. E.; Baker N. J.; Bonada N.; Domisch S.; Garcia Marquez J. R.; Heino J.; Hering D.; Jähnig S. C.; Schmidt-Kloiber A.; Stubbington R.; Altermatt F.; Álvarez-Cabria M.; Amatulli G.; Angeler D. G.; Archambaud-Suard G.; Jorrín I. A.; Aspin T.; Azpiroz I.; Bañares I.; Ortiz J. B.; Bodin C. L.; Bonacina L.; Bottarin R.; Cañedo-Argüelles M.; Csabai Z.; Datry T.; de Eyto E.; Dohet A.; Dörflinger G.; Drohan E.; Eikland K. A.; England J.; Eriksen T. E.; Evtimova V.; Feio M. J.; Ferréol M.; Floury M.; Forcellini M.; Forio M. A. E.; Fornaroli R.; Friberg N.; Fruget J.-F.; Georgieva G.; Goethals P.; Graça M. A. S.; Graf W.; House A.; Huttunen K.-L.; Jensen T. C.; Johnson R. K.; Jones J. I.; Kiesel J.; Kuglerová L.; Larrañaga A.; Leitner P.; L’Hoste L.; Lizée M. H.; Lorenz A. W.; Maire A.; Arnaiz J. A. M.; McKie B. G.; Millán A.; Monteith D.; Muotka T.; Murphy J. F.; Ozolins D.; Paavola R.; Paril P.; Peñas F. J.; Pilotto F.; Polášek M.; Rasmussen J. J.; Rubio M.; Sánchez-Fernández D.; Sandin L.; Schäfer R. B.; Scotti A.; Shen L. Q.; Skuja A.; Stoll S.; Straka M.; Timm H.; Tyufekchieva V. G.; Tziortzis I.; Uzunov Y.; van der Lee G. H.; Vannevel R.; Varadinova E.; Várbíró G.; Velle G.; Verdonschot P. F. M.; Verdonschot R. C. M.; Vidinova Y.; Wiberg-Larsen P.; Welti E. A. R. The Recovery of European Freshwater Biodiversity Has Come to a Halt. Nature 2023, 620 (7974), 582–588. 10.1038/s41586-023-06400-1. PubMed DOI PMC
Patel M.; Kumar R.; Kishor K.; Mlsna T.; Pittman C. U. Jr.; Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119 (6), 3510–3673. 10.1021/acs.chemrev.8b00299. PubMed DOI
aus der Beek T.; Weber F.; Bergmann A.; Hickmann S.; Ebert I.; Hein A.; Küster A. Pharmaceuticals in the Environment—Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35 (4), 823–835. 10.1002/etc.3339. PubMed DOI
Wilkinson J. L.; Boxall A. B. A.; Kolpin D. W.; Leung K. M. Y.; Lai R. W. S.; Galbán-Malagón C.; Adell A. D.; Mondon J.; Metian M.; Marchant R. A.; Bouzas-Monroy A.; Cuni-Sanchez A.; Coors A.; Carriquiriborde P.; Rojo M.; Gordon C.; Cara M.; Moermond M.; Luarte T.; Petrosyan V.; Perikhanyan Y.; Mahon C. S.; McGurk C. J.; Hofmann T.; Kormoker T.; Iniguez V.; Guzman-Otazo J.; Tavares J. L.; Gildasio De Figueiredo F.; Razzolini M. T. P.; Dougnon V.; Gbaguidi G.; Traoré O.; Blais J. M.; Kimpe L. E.; Wong M.; Wong D.; Ntchantcho R.; Pizarro J.; Ying G.-G.; Chen C.-E.; Páez M.; Martínez-Lara J.; Otamonga J.-P.; Poté J.; Ifo S. A.; Wilson P.; Echeverría-Sáenz S.; Udikovic-Kolic N.; Milakovic M.; Fatta-Kassinos D.; Ioannou-Ttofa L.; Belušová V.; Vymazal J.; Cárdenas-Bustamante M.; Kassa B. A.; Garric J.; Chaumot A.; Gibba P.; Kunchulia I.; Seidensticker S.; Lyberatos G.; Halldórsson H. P.; Melling M.; Shashidhar T.; Lamba M.; Nastiti A.; Supriatin A.; Pourang N.; Abedini A.; Abdullah O.; Gharbia S. S.; Pilla F.; Chefetz B.; Topaz T.; Yao K. M.; Aubakirova B.; Beisenova R.; Olaka L.; Mulu J. K.; Chatanga P.; Ntuli V.; Blama N. T.; Sherif S.; Aris A. Z.; Looi L. J.; Niang M.; Traore S. T.; Oldenkamp R.; Ogunbanwo O.; Ashfaq M.; Iqbal M.; Abdeen Z.; O’Dea A.; Morales-Saldaña J. M.; Custodio M.; de la Cruz H.; Navarrete I.; Carvalho F.; Gogra A. B.; Koroma B. M.; Cerkvenik-Flajs V.; Gombač M.; Thwala M.; Choi K.; Kang H.; Ladu J. L. C.; Rico A.; Amerasinghe P.; Sobek A.; Horlitz G.; Zenker A. K.; King A. C.; Jiang J.-J.; Kariuki R.; Tumbo M.; Tezel U.; Onay T. T.; Lejju J. B.; Vystavna Y.; Vergeles Y.; Heinzen H.; Pérez-Parada A.; Sims D. B.; Figy M.; Good D.; Teta C. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e211394711910.1073/pnas.2113947119. PubMed DOI PMC
Pereira A.; Silva L.; Laranjeiro C.; Lino C.; Pena A. Selected Pharmaceuticals in Different Aquatic Compartments: Part I-Source, Fate and Occurrence. Molecules 2020, 25 (5), 1026.10.3390/molecules25051026. PubMed DOI PMC
Bernhardt E. S.; Rosi E. J.; Gessner M. O. Synthetic Chemicals as Agents of Global Change. Front. Ecol. Environ. 2017, 15 (2), 84–90. 10.1002/fee.1450. DOI
Nilsen E.; Smalling K. L.; Ahrens L.; Gros M.; Miglioranza K. S. B.; Picó Y.; Schoenfuss H. L. Critical Review: Grand Challenges in Assessing the Adverse Effects of Contaminants of Emerging Concern on Aquatic Food Webs. Environ. Toxicol. Chem. 2019, 38 (1), 46–60. 10.1002/etc.4290. PubMed DOI
Świacka K.; Maculewicz J.; Kowalska D.; Caban M.; Smolarz K.; Świeżak J. Presence of Pharmaceuticals and Their Metabolites in Wild-Living Aquatic Organisms - Current State of Knowledge. J. Hazard. Mater. 2022, 424, 127350.10.1016/j.jhazmat.2021.127350. PubMed DOI
Saaristo M.; Brodin T.; Balshine S.; Bertram M. G.; Brooks B. W.; Ehlman S. M.; McCallum E. S.; Sih A.; Sundin J.; Wong B. B. M.; et al. Direct and Indirect Effects of Chemical Contaminants on the Behaviour, Ecology and Evolution of Wildlife. Proc. R. Soc. B 2018, 285 (1885), 20181297.10.1098/rspb.2018.1297. PubMed DOI PMC
Hoppe P. D.; Rosi-Marshall E. J.; Bechtold H. A. The Antihistamine Cimetidine Alters Invertebrate Growth and Population Dynamics in Artificial Streams. Freshw. Sci. 2012, 31 (2), 379–388. 10.1899/11-089. DOI
Rosi-Marshall E. J.; Kincaid D. W.; Bechtold H. A.; Royer T. V.; Rojas M.; Kelly J. J. Pharmaceuticals Suppress Algal Growth and Microbial Respiration and Alter Bacterial Communities in Stream Biofilms. Ecol. Appl. 2013, 23 (3), 583–593. 10.1890/12-0491.1. PubMed DOI
Jarvis A. L.; Bernot M. J.; Bernot R. J. Relationships between the Psychiatric Drug Carbamazepine and Freshwater Macroinvertebrate Community Structure. Sci. Total Environ. 2014, 496, 499–509. 10.1016/j.scitotenv.2014.07.086. PubMed DOI
Lee S. S.; Paspalof A. M.; Snow D. D.; Richmond E. K.; Rosi-Marshall E. J.; Kelly J. J. Occurrence and Potential Biological Effects of Amphetamine on Stream Communities. Environ. Sci. Technol. 2016, 50 (17), 9727–9735. 10.1021/acs.est.6b03717. PubMed DOI
Rosi E. J.; Bechtold H. A.; Snow D.; Rojas M.; Reisinger A. J.; Kelly J. J. Urban Stream Microbial Communities Show Resistance to Pharmaceutical Exposure. Ecosphere 2018, 9 (1), e0204110.1002/ecs2.2041. DOI
Robson S. V.; Rosi E. J.; Richmond E. K.; Grace M. R. Environmental Concentrations of Pharmaceuticals Alter Metabolism, Denitrification, and Diatom Assemblages in Artificial Streams. Freshw. Sci. 2020, 39 (2), 256–267. 10.1086/708893. DOI
Brodin T.; Piovano S.; Fick J.; Klaminder J.; Heynen M.; Jonsson M. Ecological Effects of Pharmaceuticals in Aquatic Systems—Impacts through Behavioural Alterations. Philos. Trans. R. Soc., B 2014, 369 (1656), 20130580.10.1098/rstb.2013.0580. PubMed DOI PMC
Michelangeli M.; Martin J. M.; Pinter-Wollman N.; Ioannou C. C.; McCallum E. S.; Bertram M. G.; Brodin T. Predicting the Impacts of Chemical Pollutants on Animal Groups. Trends Ecol. Evol. 2022, 37, 789–802. 10.1016/j.tree.2022.05.009. PubMed DOI
Bertram M. G.; Martin J. M.; McCallum E. S.; Alton L. A.; Brand J. A.; Brooks B. W.; Cerveny D.; Fick J.; Ford A. T.; Hellström G.; Michelangeli M.; Nakagawa S.; Polverino G.; Saaristo M.; Sih A.; Tan H.; Tyler C. R.; Wong B. B. M.; Brodin T. Frontiers in Quantifying Wildlife Behavioural Responses to Chemical Pollution. Biol. Rev. Cambridge Philos. Soc. 2022, 97, 1346–1364. 10.1111/brv.12844. PubMed DOI PMC
Gunnarsson L.; Snape J. R.; Verbruggen B.; Owen S. F.; Kristiansson E.; Margiotta-Casaluci L.; Österlund T.; Hutchinson K.; Leverett D.; Marks B.; Tyler C. R. Pharmacology beyond the Patient - The Environmental Risks of Human Drugs. Environ. Int. 2019, 129, 320–332. 10.1016/j.envint.2019.04.075. PubMed DOI
Bose A. P. H.; McCallum E. S.; Avramović M.; Bertram M. G.; Blom E. L.; Cerveny D.; Grønlund S. N.; Leander J.; Lundberg P.; Martin J. M.; et al. Pharmaceutical pollution disrupts the behavior and predator-prey interactions of two widespread aquatic insects. iScience 2022, 25, 105672.10.1016/j.isci.2022.105672. PubMed DOI PMC
Bláha M.; Grabicova K.; Shaliutina O.; Kubec J.; Randák T.; Zlabek V.; Buřič M.; Veselý L. Foraging Behaviour of Top Predators Mediated by Pollution of Psychoactive Pharmaceuticals and Effects on Ecosystem Stability. Sci. Total Environ. 2019, 662, 655–661. 10.1016/j.scitotenv.2019.01.295. PubMed DOI
Hulot F. D.; Lacroix G.; Loreau M. Differential Responses of Size-Based Functional Groups to Bottom-up and Top–down Perturbations in Pelagic Food Webs: A Meta-Analysis. Oikos 2014, 123 (11), 1291–1300. 10.1111/oik.01116. DOI
Wilson M. W.; Ridlon A. D.; Gaynor K. M.; Gaines S. D.; Stier A. C.; Halpern B. S. Ecological Impacts of Human-Induced Animal Behaviour Change. Ecol. Lett. 2020, 23 (10), 1522–1536. 10.1111/ele.13571. PubMed DOI
McDonald M. D. An AOP Analysis of Selective Serotonin Reuptake Inhibitors (SSRIs) for Fish. Comp. Biochem. Physiol., Part C: Pharmacol., Toxicol. Endocrinol. 2017, 197, 19–31. 10.1016/j.cbpc.2017.03.007. PubMed DOI
Mole R. A.; Brooks B. W. Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. Environ. Pollut. 2019, 250, 1019–1031. 10.1016/j.envpol.2019.04.118. PubMed DOI
Richmond E. K.; Rosi E. J.; Walters D. M.; Fick J.; Hamilton S. K.; Brodin T.; Sundelin A.; Grace M. R. A Diverse Suite of Pharmaceuticals Contaminates Stream and Riparian Food Webs. Nat. Commun. 2018, 9 (1), 4491.10.1038/s41467-018-06822-w. PubMed DOI PMC
Boström M. L.; Ugge G.; Jönsson J. Å.; Berglund O. Bioaccumulation and Trophodynamics of the Antidepressants Sertraline and Fluoxetine in Laboratory-Constructed, 3-Level Aquatic Food Chains. Environ. Toxicol. Chem. 2017, 36 (4), 1029–1037. 10.1002/etc.3637. PubMed DOI
Richmond E. K.; Rosi-Marshall E. J.; Lee S. S.; Thompson R. M.; Grace M. R. Antidepressants in Stream Ecosystems: Influence of Selective Serotonin Reuptake Inhibitors (SSRIs) on Algal Production and Insect Emergence. Freshw. Sci. 2016, 35 (3), 845–855. 10.1086/687841. DOI
Grzesiuk M.; Spijkerman E.; Lachmann S. C.; Wacker A. Environmental Concentrations of Pharmaceuticals Directly Affect Phytoplankton and Effects Propagate through Trophic Interactions. Ecotoxicol. Environ. Saf. 2018, 156, 271–278. 10.1016/j.ecoenv.2018.03.019. PubMed DOI
Péry A.; Gust M.; Vollat B.; Mons R.; Ramil M.; Fink G.; Ternes T.; Garric J. Fluoxetine Effects Assessment on the Life Cycle of Aquatic Invertebrates. Chemosphere 2008, 73 (3), 300–304. 10.1016/j.chemosphere.2008.06.029. PubMed DOI
Richmond E. K.; Rosi E. J.; Reisinger A. J.; Hanrahan B. R.; Thompson R. M.; Grace M. R. Influences of the Antidepressant Fluoxetine on Stream Ecosystem Function and Aquatic Insect Emergence at Environmentally Realistic Concentrations. J. Freshwater Ecol. 2019, 34 (1), 513–531. 10.1080/02705060.2019.1629546. DOI
Martin J. M.; Nagarajan-Radha V.; Tan H.; Bertram M. G.; Brand J. A.; Saaristo M.; Dowling D. K.; Wong B. B. M. Antidepressant Exposure Causes a Nonmonotonic Reduction in Anxiety-Related Behaviour in Female Mosquitofish. J. Hazard. Mater. Lett. 2020, 1, 100004.10.1016/j.hazl.2020.100004. DOI
Tan H.; Martin J. M.; Alton L. A.; Lesku J. A.; Wong B. B. M. Widespread Psychoactive Pollutant Augments Daytime Restfulness and Disrupts Diurnal Activity Rhythms in Fish. Chemosphere 2023, 326, 138446.10.1016/j.chemosphere.2023.138446. PubMed DOI
Martin J. M.; Bertram M. G.; Saaristo M.; Fursdon J. B.; Hannington S. L.; Brooks B. W.; Burket S. R.; Mole R. A.; Deal N. D. S.; Wong B. B. M. Antidepressants in Surface Waters: Fluoxetine Influences Mosquitofish Anxiety-Related Behavior at Environmentally Relevant Levels. Environ. Sci. Technol. 2019, 53 (10), 6035–6043. 10.1021/acs.est.9b00944. PubMed DOI
Kennedy M. D.; Connaughton V. P. Differential Effects of Fluoxetine on the Phototactic Behavior of 3 Amphipod Species (Crustacea; Amphipoda). Environ. Toxicol. Pharmacol. 2022, 93, 103889.10.1016/j.etap.2022.103889. PubMed DOI
Martin J. M.; Saaristo M.; Tan H.; Bertram M. G.; Nagarajan-Radha V.; Dowling D. K.; Wong B. B. M. Field-Realistic Antidepressant Exposure Disrupts Group Foraging Dynamics in Mosquitofish. Biol. Lett. 2019, 15 (11), 20190615.10.1098/rsbl.2019.0615. PubMed DOI PMC
Henry J.; Brand J. A.; Bai Y.; Martin J. M.; Wong B. B. M.; Wlodkowic D. Multi-Generational Impacts of Exposure to Antidepressant Fluoxetine on Behaviour, Reproduction, and Morphology of Freshwater Snail Physa Acuta. Sci. Total Environ. 2022, 814, 152731.10.1016/j.scitotenv.2021.152731. PubMed DOI
Pyke G. H. Plague Minnow or Mosquito Fish? A Review of the Biology and Impacts of Introduced Gambusia Species. Annu. Rev. Ecol. Evol. Syst. 2008, 39 (1), 171–191. 10.1146/annurev.ecolsys.39.110707.173451. DOI
Ho S. S.; Bond N. R.; Lake P. S. Comparing Food-Web Impacts of a Native Invertebrate and an Invasive Fish as Predators in Small Floodplain Wetlands. Mar. Freshwater Res. 2011, 62, 372–382. 10.1071/MF10222. DOI
Rettig J. E.; Smith G. R. Relative Strength of Top-down Effects of an Invasive Fish and Bottom-up Effects of Nutrient Addition in a Simple Aquatic Food Web. Environ. Sci. Pollut. Res. Int. 2021, 28 (5), 5845–5853. 10.1007/s11356-020-10933-7. PubMed DOI
Preston D. L.; Hedman H. D.; Esfahani E. R.; Pena E. M.; Boland C. E.; Lunde K. B.; Johnson P. T. J. Responses of a Wetland Ecosystem to the Controlled Introduction of Invasive Fish. Freshwater Biol. 2017, 62 (4), 767–778. 10.1111/fwb.12900. DOI
Bertram M. G.; Ecker T. E.; Wong B. B. M.; O’Bryan M. K.; Baumgartner J. B.; Martin J. M.; Saaristo M. The Antidepressant Fluoxetine Alters Mechanisms of Pre- and Post-Copulatory Sexual Selection in the Eastern Mosquitofish (Gambusia Holbrooki). Environ. Pollut. 2018, 238, 238–247. 10.1016/j.envpol.2018.03.006. PubMed DOI
Meijide F. J.; Da Cuña R. H.; Prieto J. P.; Dorelle L. S.; Babay P. A.; Lo Nostro F. L. Effects of Waterborne Exposure to the Antidepressant Fluoxetine on Swimming, Shoaling and Anxiety Behaviours of the Mosquitofish Gambusia Holbrooki. Ecotoxicol. Environ. Saf. 2018, 163, 646–655. 10.1016/j.ecoenv.2018.07.085. PubMed DOI
Polverino G.; Martin J. M.; Bertram M. G.; Soman V. R.; Tan H.; Brand J. A.; Mason R. T.; Wong B. B. M. Psychoactive Pollution Suppresses Individual Differences in Fish Behaviour. Proc. R. Soc. B 2021, 288 (1944), 20202294.10.1098/rspb.2020.2294. PubMed DOI PMC
Tan H.; Polverino G.; Martin J. M.; Bertram M. G.; Wiles S. C.; Palacios M. M.; Bywater C. L.; White C. R.; Wong B. B. M. Chronic Exposure to a Pervasive Pharmaceutical Pollutant Erodes Among-Individual Phenotypic Variation in a Fish. Environ. Pollut. 2020, 263, 114450.10.1016/j.envpol.2020.114450. PubMed DOI
McCallum E. S.; Cerveny D.; Bose A. P. H.; Fick J.; Brodin T. Cost-Effective Pharmaceutical Implants in Fish: Validating the Performance of Slow-Release Implants for the Antidepressant Fluoxetine. Environ. Toxicol. Chem. 2023, 42 (6), 1326–1336. 10.1002/etc.5613. PubMed DOI
Cerveny D.; Brodin T.; Cisar P.; McCallum E. S.; Fick J. Bioconcentration and Behavioral Effects of Four Benzodiazepines and Their Environmentally Relevant Mixture in Wild Fish. Sci. Total Environ. 2020, 702, 134780.10.1016/j.scitotenv.2019.134780. PubMed DOI
Peig J.; Green A. J. New Perspectives for Estimating Body Condition from Mass/Length Data: The Scaled Mass Index as an Alternative Method. Oikos 2009, 118 (12), 1883–1891. 10.1111/j.1600-0706.2009.17643.x. DOI
Warton D. I.; Duursma R. A.; Falster D. S.; Taskinen S. smatr 3– an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 2012, 3, 257–259. 10.1111/j.2041-210X.2011.00153.x. DOI
R Core Team . R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022.
Bürkner P. C. Brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80 (1), 1–28. 10.18637/jss.v080.i01. DOI
Stan Development Team Stan Modeling Language Users Guide and Reference Manual, v.2.33.0, (2023). https://mc-stan.org (accessed Nov 12, 2020).
McElreath R.Statistical Rethinking: A Bayesian Course with Examples in R and Stan; CRC Press, 2016; Vol. 122.
Wickham H.; Chang W.; Wickham M. H.. Create Elegant Data Visualisations Using the Grammar of Graphics. Package ‘ggplot2’, 2016, pp 1–189.2 (1),
Kay M.Tidybayes: Tidy Data and Geoms for Bayesian Models. R package version 3.0.4, 2023. https://mjskay.github.io/tidybayes/(accessed 15 March 2021).
Laird B. D.; Brain R. A.; Johnson D. J.; Wilson C. J.; Sanderson H.; Solomon K. R. Toxicity and Hazard of a Mixture of SSRIs to Zooplankton Communities Evaluated in Aquatic Microcosms. Chemosphere 2007, 69 (6), 949–954. 10.1016/j.chemosphere.2007.05.020. PubMed DOI
Heyland A.; Bastien T.; Halliwushka K. Transgenerational Reproductive Effects of Two Serotonin Reuptake Inhibitors after Acute Exposure in Daphnia Magna Embryos. Comp. Biochem. Physiol., Part C: Pharmacol., Toxicol. Endocrinol. 2020, 238, 108875.10.1016/j.cbpc.2020.108875. PubMed DOI
Lamichhane K.; Garcia S. N.; Huggett D. B.; Deangelis D. L.; La Point T. W. Exposures to a Selective Serotonin Reuptake Inhibitor (SSRI), Sertraline Hydrochloride, over Multiple Generations: Changes in Life History Traits in Ceriodaphnia Dubia. Ecotoxicol. Environ. Saf. 2014, 101, 124–130. 10.1016/j.ecoenv.2013.11.026. PubMed DOI
Schuijt L. M.; van Smeden J.; van Drimmelen C. K. E.; Buijse L. L.; Wu D.; Boerwinkel M.-C.; Belgers D. J. M.; Matser A. M.; Roessink I.; Heikamp-de Jong I.; Beentjes K. K.; Trimbos K. B.; Smidt H.; Van den Brink P. J. Effects of Antidepressant Exposure on Aquatic Communities Assessed by a Combination of Morphological Identification, Functional Measurements, Environmental DNA Metabarcoding and Bioassays. Chemosphere 2024, 349, 140706.10.1016/j.chemosphere.2023.140706. PubMed DOI
Hébert M.; Fugère V.; Beisner B. E.; Barbosa da Costa N.; Barrett R. D. H.; Bell G.; Shapiro B. J.; Yargeau V.; Gonzalez A.; Fussmann G. F. Widespread Agrochemicals Differentially Affect Zooplankton Biomass and Community Structure. Ecol. Appl. 2021, 31 (7), e0242310.1002/eap.2423. PubMed DOI
Duchet C.; Grabicová K.; Kolar V.; Lepšová O.; Švecová H.; Csercsa A.; Zdvihalová B.; Randák T.; Boukal D. S. Combined Effects of Climate Warming and Pharmaceuticals on a Tri-Trophic Freshwater Food Web. Water Res. 2024, 250, 121053.10.1016/j.watres.2023.121053. PubMed DOI
Aulsebrook L. C.; Wong B. B. M.; Hall M. D. Warmer Temperatures Limit the Effects of Antidepressant Pollution on Life-History Traits. Proc. R. Soc. B 2022, 289 (1968), 20212701.10.1098/rspb.2021.2701. PubMed DOI PMC
Campos B.; Piña B.; Barata C C. Mechanisms of Action of Selective Serotonin Reuptake Inhibitors in Daphnia Magna. Environ. Sci. Technol. 2012, 46 (5), 2943–2950. 10.1021/es203157f. PubMed DOI
Lopez L. K.; Gil M. A.; Crowley P. H.; Trimmer P. C.; Munson A.; Ligocki I. Y.; Michelangeli M.; Sih A. Integrating Animal Behaviour into Research on Multiple Environmental Stressors: A Conceptual Framework. Biol. Rev. Cambridge Philos. Soc. 2023, 98, 1345–1364. 10.1111/brv.12956. PubMed DOI
Rohr J. R.; Kerby J. L.; Sih A. Community Ecology as a Framework for Predicting Contaminant Effects. Trends Ecol. Evol. 2006, 21 (11), 606–613. 10.1016/j.tree.2006.07.002. PubMed DOI
Relyea R. A.; Hoverman J. T. Interactive Effects of Predators and a Pesticide on Aquatic Communities. Oikos 2008, 117 (11), 1647–1658. 10.1111/j.1600-0706.2008.16933.x. DOI
Van Donk E.; Peacor S.; Grosser K.; De Senerpont Domis L. N.; Lürling M. Pharmaceuticals May Disrupt Natural Chemical Information Flows and Species Interactions in Aquatic Systems: Ideas and Perspectives on a Hidden Global Change. Rev. Environ. Contam. Toxicol. 2016, 238, 91–105. 10.1007/398_2015_5002. PubMed DOI
Reisinger A. J.; Reisinger L. S.; Richmond E. K.; Rosi E. J. Exposure to a Common Antidepressant Alters Crayfish Behavior and Has Potential Subsequent Ecosystem Impacts. Ecosphere 2021, 12, e0352710.1002/ecs2.3527. DOI
Wan L.; Long Y.; Hui J.; Zhang H.; Hou Z.; Tan J.; Pan Y.; Sun S. Effect of Norfloxacin on Algae-Cladoceran Grazer-Larval Damselfly Food Chains: Algal Morphology-Mediated Trophic Cascades. Chemosphere 2020, 256, 127166.10.1016/j.chemosphere.2020.127166. PubMed DOI
Rivetti C.; Campos B.; Barata C. Low Environmental Levels of Neuro-Active Pharmaceuticals Alter Phototactic Behaviour and Reproduction in Daphnia Magna. Aquat. Toxicol. 2016, 170, 289–296. 10.1016/j.aquatox.2015.07.019. PubMed DOI
Gust M.; Buronfosse T.; Giamberini L.; Ramil M.; Mons R.; Garric J. Effects of Fluoxetine on the Reproduction of Two Prosobranch Mollusks: Potamopyrgus Antipodarum and Valvata Piscinalis. Environ. Pollut. 2009, 157 (2), 423–429. 10.1016/j.envpol.2008.09.040. PubMed DOI
Painter M. M.; Buerkley M. A.; Julius M. L.; Vajda A. M.; Norris D. O.; Barber L. B.; Furlong E. T.; Schultz M. M.; Schoenfuss H. L. Antidepressants at Environmentally Relevant Concentrations Affect Predator Avoidance Behavior of Larval Fathead Minnows (Pimephales Promelas). Environ. Toxicol. Chem. 2009, 28 (12), 2677–2684. 10.1897/08-556.1. PubMed DOI
De Lange H. J.; Noordoven W.; Murk A. J.; Lürling M.; Peeters E. T. H. M. Behavioural Responses of Gammarus Pulex (Crustacea, Amphipoda) to Low Concentrations of Pharmaceuticals. Aquat. Toxicol. 2006, 78 (3), 209–216. 10.1016/j.aquatox.2006.03.002. PubMed DOI
Vandenberg L. N.; Colborn T.; Hayes T. B.; Heindel J. J.; Jacobs D. R. Jr.; Lee D.-H.; Shioda T.; Soto A. M.; vom Saal F. S.; Welshons W. V.; Zoeller R. T.; Myers J. P. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocr. Rev. 2012, 33 (3), 378–455. 10.1210/er.2011-1050. PubMed DOI PMC
Agathokleous E. Environmental Hormesis, a Fundamental Non-Monotonic Biological Phenomenon with Implications in Ecotoxicology and Environmental Safety. Ecotoxicol. Environ. Saf. 2018, 148, 1042–1053. 10.1016/j.ecoenv.2017.12.003. DOI
Ramírez-Morales D.; Rojas-Jiménez K.; Castro-Gutiérrez V.; Rodríguez-Saravia S.; Vaglio-Garro A.; Araya-Valverde E.; Rodríguez-Rodríguez C. E. Ecotoxicological Effects of Ketoprofen and Fluoxetine and Their Mixture in an Aquatic Microcosm. Aquat. Toxicol. 2024, 271, 106924.10.1016/j.aquatox.2024.106924. PubMed DOI
Haiahem D.; Touati L.; Baaziz N.; Samraoui F.; Alfarhan A. H.; Samraoui B. Impact of Eastern Mosquitofish, Gambusia Holbrooki,on Temporary Ponds: Insights on How Predation May Structure Zooplankton Communities. Zool. Ecol. 2017, 27 (2), 124–132. 10.1080/21658005.2017.1337372. DOI
Grzesiuk M.; Gryglewicz E.; Bentkowski P.; Pijanowska J. Impact of Fluoxetine on Herbivorous Zooplankton and Planktivorous Fish. Environ. Toxicol. Chem. 2023, 42 (2), 385–392. 10.1002/etc.5525. PubMed DOI PMC
Hedgespeth M. L.; Nilsson P. A.; Berglund O. Ecological Implications of Altered Fish Foraging after Exposure to an Antidepressant Pharmaceutical. Aquat. Toxicol. 2014, 151, 84–87. 10.1016/j.aquatox.2013.12.011. PubMed DOI
Rodrigues A. C. M.; Machado A. L.; Bordalo M. D.; Saro L.; Simão F. C. P.; Rocha R. J. M.; Golovko O.; Žlábek V.; Barata C.; Soares A. M.; et al. Invasive Species Mediate Insecticide Effects on Community and Ecosystem Functioning. Environ. Sci. Technol. 2018, 52 (8), 4889–4900. 10.1021/acs.est.8b00193. PubMed DOI
Geyer R. L.; Smith G. R.; Rettig J. E. Effects of Roundup Formulations, Nutrient Addition, and Western Mosquitofish (Gambusia Affinis) on Aquatic Communities. Environ. Sci. Pollut. Res. 2016, 23 (12), 11729–11739. 10.1007/s11356-016-6381-2. PubMed DOI
Fahlman J.; Hellström G.; Jonsson M.; Fick J. B.; Rosvall M.; Klaminder J. Impacts of Oxazepam on Perch (Perca Fluviatilis) Behavior: Fish Familiarized to Lake Conditions Do Not Show Predicted Anti-Anxiety Response. Environ. Sci. Technol. 2021, 55 (6), 3624–3633. 10.1021/acs.est.0c05587. PubMed DOI PMC
Vossen L. E.; Červený D.; Sen Sarma O.; Thörnqvist P. O.; Jutfelt F.; Fick J.; Brodin T.; Winberg S. Low Concentrations of the Benzodiazepine Drug Oxazepam Induce Anxiolytic Effects in Wild-Caught but Not in Laboratory Zebrafish. Sci. Total Environ. 2020, 703, 134701.10.1016/j.scitotenv.2019.134701. PubMed DOI
Herculano A. M.; Maximino C. Serotonergic Modulation of Zebrafish Behavior: Towards a Paradox. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 55, 50–66. 10.1016/j.pnpbp.2014.03.008. PubMed DOI
Fischer B. B.; Pomati F.; Eggen R. I. L. The Toxicity of Chemical Pollutants in Dynamic Natural Systems: The Challenge of Integrating Environmental Factors and Biological Complexity. Sci. Total Environ. 2013, 449, 253–259. 10.1016/j.scitotenv.2013.01.066. PubMed DOI