Pharmaceutical Pollution Alters the Structure of Freshwater Communities and Hinders Their Recovery from a Fish Predator

. 2024 Aug 06 ; 58 (31) : 13904-13917. [epub] 20240724

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39049184

Freshwater ecosystems are under threat from rising pharmaceutical pollution. While such pollutants are known to elicit biological effects on organisms, we have limited knowledge on how these effects might cascade through food-webs, disrupt ecological processes, and shape freshwater communities. In this study, we used a mesocosm experiment to explore how the community impacts of a top-order predator, the eastern mosquitofish (Gambusia holbrooki), are mediated by exposure to environmentally relevant low (measured concentration: ∼10 ng/L) and high concentrations (∼110 ng/L) of the pervasive pharmaceutical pollutant fluoxetine. We found no evidence that exposure to fluoxetine altered the consumptive effects of mosquitofish on zooplankton. However, once mosquitofish were removed from the mesocosms, zooplankton abundance recovered to a greater extent in control mesocosms compared to both low and high fluoxetine-exposed mesocosms. By the end of the experiment, this resulted in fundamental differences in community structure between the control and fluoxetine-treated mesocosms. Specifically, the control mesocosms were characterized by higher zooplankton abundances and lower algal biomass, whereas mesocosms exposed to either low or high concentrations of fluoxetine had lower zooplankton abundances and higher algal biomass. Our results suggest that fluoxetine, even at very low concentrations, can alter aquatic communities and hinder their recovery from disturbances.

Zobrazit více v PubMed

Reid A. J.; Carlson A. K.; Creed I. F.; Eliason E. J.; Gell P. A.; Johnson P. T. J.; Kidd K. A.; MacCormack T. J.; Olden J. D.; Ormerod S. J.; Smol J. P.; Taylor W. W.; Tockner K.; Vermaire J. C.; Dudgeon D.; Cooke S. J. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity: Emerging Threats to Freshwater Biodiversity. Biol. Rev. Cambridge Philos. Soc. 2019, 94 (3), 849–873. 10.1111/brv.12480. PubMed DOI

Haase P.; Bowler D. E.; Baker N. J.; Bonada N.; Domisch S.; Garcia Marquez J. R.; Heino J.; Hering D.; Jähnig S. C.; Schmidt-Kloiber A.; Stubbington R.; Altermatt F.; Álvarez-Cabria M.; Amatulli G.; Angeler D. G.; Archambaud-Suard G.; Jorrín I. A.; Aspin T.; Azpiroz I.; Bañares I.; Ortiz J. B.; Bodin C. L.; Bonacina L.; Bottarin R.; Cañedo-Argüelles M.; Csabai Z.; Datry T.; de Eyto E.; Dohet A.; Dörflinger G.; Drohan E.; Eikland K. A.; England J.; Eriksen T. E.; Evtimova V.; Feio M. J.; Ferréol M.; Floury M.; Forcellini M.; Forio M. A. E.; Fornaroli R.; Friberg N.; Fruget J.-F.; Georgieva G.; Goethals P.; Graça M. A. S.; Graf W.; House A.; Huttunen K.-L.; Jensen T. C.; Johnson R. K.; Jones J. I.; Kiesel J.; Kuglerová L.; Larrañaga A.; Leitner P.; L’Hoste L.; Lizée M. H.; Lorenz A. W.; Maire A.; Arnaiz J. A. M.; McKie B. G.; Millán A.; Monteith D.; Muotka T.; Murphy J. F.; Ozolins D.; Paavola R.; Paril P.; Peñas F. J.; Pilotto F.; Polášek M.; Rasmussen J. J.; Rubio M.; Sánchez-Fernández D.; Sandin L.; Schäfer R. B.; Scotti A.; Shen L. Q.; Skuja A.; Stoll S.; Straka M.; Timm H.; Tyufekchieva V. G.; Tziortzis I.; Uzunov Y.; van der Lee G. H.; Vannevel R.; Varadinova E.; Várbíró G.; Velle G.; Verdonschot P. F. M.; Verdonschot R. C. M.; Vidinova Y.; Wiberg-Larsen P.; Welti E. A. R. The Recovery of European Freshwater Biodiversity Has Come to a Halt. Nature 2023, 620 (7974), 582–588. 10.1038/s41586-023-06400-1. PubMed DOI PMC

Patel M.; Kumar R.; Kishor K.; Mlsna T.; Pittman C. U. Jr.; Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119 (6), 3510–3673. 10.1021/acs.chemrev.8b00299. PubMed DOI

aus der Beek T.; Weber F.; Bergmann A.; Hickmann S.; Ebert I.; Hein A.; Küster A. Pharmaceuticals in the Environment—Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35 (4), 823–835. 10.1002/etc.3339. PubMed DOI

Wilkinson J. L.; Boxall A. B. A.; Kolpin D. W.; Leung K. M. Y.; Lai R. W. S.; Galbán-Malagón C.; Adell A. D.; Mondon J.; Metian M.; Marchant R. A.; Bouzas-Monroy A.; Cuni-Sanchez A.; Coors A.; Carriquiriborde P.; Rojo M.; Gordon C.; Cara M.; Moermond M.; Luarte T.; Petrosyan V.; Perikhanyan Y.; Mahon C. S.; McGurk C. J.; Hofmann T.; Kormoker T.; Iniguez V.; Guzman-Otazo J.; Tavares J. L.; Gildasio De Figueiredo F.; Razzolini M. T. P.; Dougnon V.; Gbaguidi G.; Traoré O.; Blais J. M.; Kimpe L. E.; Wong M.; Wong D.; Ntchantcho R.; Pizarro J.; Ying G.-G.; Chen C.-E.; Páez M.; Martínez-Lara J.; Otamonga J.-P.; Poté J.; Ifo S. A.; Wilson P.; Echeverría-Sáenz S.; Udikovic-Kolic N.; Milakovic M.; Fatta-Kassinos D.; Ioannou-Ttofa L.; Belušová V.; Vymazal J.; Cárdenas-Bustamante M.; Kassa B. A.; Garric J.; Chaumot A.; Gibba P.; Kunchulia I.; Seidensticker S.; Lyberatos G.; Halldórsson H. P.; Melling M.; Shashidhar T.; Lamba M.; Nastiti A.; Supriatin A.; Pourang N.; Abedini A.; Abdullah O.; Gharbia S. S.; Pilla F.; Chefetz B.; Topaz T.; Yao K. M.; Aubakirova B.; Beisenova R.; Olaka L.; Mulu J. K.; Chatanga P.; Ntuli V.; Blama N. T.; Sherif S.; Aris A. Z.; Looi L. J.; Niang M.; Traore S. T.; Oldenkamp R.; Ogunbanwo O.; Ashfaq M.; Iqbal M.; Abdeen Z.; O’Dea A.; Morales-Saldaña J. M.; Custodio M.; de la Cruz H.; Navarrete I.; Carvalho F.; Gogra A. B.; Koroma B. M.; Cerkvenik-Flajs V.; Gombač M.; Thwala M.; Choi K.; Kang H.; Ladu J. L. C.; Rico A.; Amerasinghe P.; Sobek A.; Horlitz G.; Zenker A. K.; King A. C.; Jiang J.-J.; Kariuki R.; Tumbo M.; Tezel U.; Onay T. T.; Lejju J. B.; Vystavna Y.; Vergeles Y.; Heinzen H.; Pérez-Parada A.; Sims D. B.; Figy M.; Good D.; Teta C. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e211394711910.1073/pnas.2113947119. PubMed DOI PMC

Pereira A.; Silva L.; Laranjeiro C.; Lino C.; Pena A. Selected Pharmaceuticals in Different Aquatic Compartments: Part I-Source, Fate and Occurrence. Molecules 2020, 25 (5), 1026.10.3390/molecules25051026. PubMed DOI PMC

Bernhardt E. S.; Rosi E. J.; Gessner M. O. Synthetic Chemicals as Agents of Global Change. Front. Ecol. Environ. 2017, 15 (2), 84–90. 10.1002/fee.1450. DOI

Nilsen E.; Smalling K. L.; Ahrens L.; Gros M.; Miglioranza K. S. B.; Picó Y.; Schoenfuss H. L. Critical Review: Grand Challenges in Assessing the Adverse Effects of Contaminants of Emerging Concern on Aquatic Food Webs. Environ. Toxicol. Chem. 2019, 38 (1), 46–60. 10.1002/etc.4290. PubMed DOI

Świacka K.; Maculewicz J.; Kowalska D.; Caban M.; Smolarz K.; Świeżak J. Presence of Pharmaceuticals and Their Metabolites in Wild-Living Aquatic Organisms - Current State of Knowledge. J. Hazard. Mater. 2022, 424, 127350.10.1016/j.jhazmat.2021.127350. PubMed DOI

Saaristo M.; Brodin T.; Balshine S.; Bertram M. G.; Brooks B. W.; Ehlman S. M.; McCallum E. S.; Sih A.; Sundin J.; Wong B. B. M.; et al. Direct and Indirect Effects of Chemical Contaminants on the Behaviour, Ecology and Evolution of Wildlife. Proc. R. Soc. B 2018, 285 (1885), 20181297.10.1098/rspb.2018.1297. PubMed DOI PMC

Hoppe P. D.; Rosi-Marshall E. J.; Bechtold H. A. The Antihistamine Cimetidine Alters Invertebrate Growth and Population Dynamics in Artificial Streams. Freshw. Sci. 2012, 31 (2), 379–388. 10.1899/11-089. DOI

Rosi-Marshall E. J.; Kincaid D. W.; Bechtold H. A.; Royer T. V.; Rojas M.; Kelly J. J. Pharmaceuticals Suppress Algal Growth and Microbial Respiration and Alter Bacterial Communities in Stream Biofilms. Ecol. Appl. 2013, 23 (3), 583–593. 10.1890/12-0491.1. PubMed DOI

Jarvis A. L.; Bernot M. J.; Bernot R. J. Relationships between the Psychiatric Drug Carbamazepine and Freshwater Macroinvertebrate Community Structure. Sci. Total Environ. 2014, 496, 499–509. 10.1016/j.scitotenv.2014.07.086. PubMed DOI

Lee S. S.; Paspalof A. M.; Snow D. D.; Richmond E. K.; Rosi-Marshall E. J.; Kelly J. J. Occurrence and Potential Biological Effects of Amphetamine on Stream Communities. Environ. Sci. Technol. 2016, 50 (17), 9727–9735. 10.1021/acs.est.6b03717. PubMed DOI

Rosi E. J.; Bechtold H. A.; Snow D.; Rojas M.; Reisinger A. J.; Kelly J. J. Urban Stream Microbial Communities Show Resistance to Pharmaceutical Exposure. Ecosphere 2018, 9 (1), e0204110.1002/ecs2.2041. DOI

Robson S. V.; Rosi E. J.; Richmond E. K.; Grace M. R. Environmental Concentrations of Pharmaceuticals Alter Metabolism, Denitrification, and Diatom Assemblages in Artificial Streams. Freshw. Sci. 2020, 39 (2), 256–267. 10.1086/708893. DOI

Brodin T.; Piovano S.; Fick J.; Klaminder J.; Heynen M.; Jonsson M. Ecological Effects of Pharmaceuticals in Aquatic Systems—Impacts through Behavioural Alterations. Philos. Trans. R. Soc., B 2014, 369 (1656), 20130580.10.1098/rstb.2013.0580. PubMed DOI PMC

Michelangeli M.; Martin J. M.; Pinter-Wollman N.; Ioannou C. C.; McCallum E. S.; Bertram M. G.; Brodin T. Predicting the Impacts of Chemical Pollutants on Animal Groups. Trends Ecol. Evol. 2022, 37, 789–802. 10.1016/j.tree.2022.05.009. PubMed DOI

Bertram M. G.; Martin J. M.; McCallum E. S.; Alton L. A.; Brand J. A.; Brooks B. W.; Cerveny D.; Fick J.; Ford A. T.; Hellström G.; Michelangeli M.; Nakagawa S.; Polverino G.; Saaristo M.; Sih A.; Tan H.; Tyler C. R.; Wong B. B. M.; Brodin T. Frontiers in Quantifying Wildlife Behavioural Responses to Chemical Pollution. Biol. Rev. Cambridge Philos. Soc. 2022, 97, 1346–1364. 10.1111/brv.12844. PubMed DOI PMC

Gunnarsson L.; Snape J. R.; Verbruggen B.; Owen S. F.; Kristiansson E.; Margiotta-Casaluci L.; Österlund T.; Hutchinson K.; Leverett D.; Marks B.; Tyler C. R. Pharmacology beyond the Patient - The Environmental Risks of Human Drugs. Environ. Int. 2019, 129, 320–332. 10.1016/j.envint.2019.04.075. PubMed DOI

Bose A. P. H.; McCallum E. S.; Avramović M.; Bertram M. G.; Blom E. L.; Cerveny D.; Grønlund S. N.; Leander J.; Lundberg P.; Martin J. M.; et al. Pharmaceutical pollution disrupts the behavior and predator-prey interactions of two widespread aquatic insects. iScience 2022, 25, 105672.10.1016/j.isci.2022.105672. PubMed DOI PMC

Bláha M.; Grabicova K.; Shaliutina O.; Kubec J.; Randák T.; Zlabek V.; Buřič M.; Veselý L. Foraging Behaviour of Top Predators Mediated by Pollution of Psychoactive Pharmaceuticals and Effects on Ecosystem Stability. Sci. Total Environ. 2019, 662, 655–661. 10.1016/j.scitotenv.2019.01.295. PubMed DOI

Hulot F. D.; Lacroix G.; Loreau M. Differential Responses of Size-Based Functional Groups to Bottom-up and Top–down Perturbations in Pelagic Food Webs: A Meta-Analysis. Oikos 2014, 123 (11), 1291–1300. 10.1111/oik.01116. DOI

Wilson M. W.; Ridlon A. D.; Gaynor K. M.; Gaines S. D.; Stier A. C.; Halpern B. S. Ecological Impacts of Human-Induced Animal Behaviour Change. Ecol. Lett. 2020, 23 (10), 1522–1536. 10.1111/ele.13571. PubMed DOI

McDonald M. D. An AOP Analysis of Selective Serotonin Reuptake Inhibitors (SSRIs) for Fish. Comp. Biochem. Physiol., Part C: Pharmacol., Toxicol. Endocrinol. 2017, 197, 19–31. 10.1016/j.cbpc.2017.03.007. PubMed DOI

Mole R. A.; Brooks B. W. Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. Environ. Pollut. 2019, 250, 1019–1031. 10.1016/j.envpol.2019.04.118. PubMed DOI

Richmond E. K.; Rosi E. J.; Walters D. M.; Fick J.; Hamilton S. K.; Brodin T.; Sundelin A.; Grace M. R. A Diverse Suite of Pharmaceuticals Contaminates Stream and Riparian Food Webs. Nat. Commun. 2018, 9 (1), 4491.10.1038/s41467-018-06822-w. PubMed DOI PMC

Boström M. L.; Ugge G.; Jönsson J. Å.; Berglund O. Bioaccumulation and Trophodynamics of the Antidepressants Sertraline and Fluoxetine in Laboratory-Constructed, 3-Level Aquatic Food Chains. Environ. Toxicol. Chem. 2017, 36 (4), 1029–1037. 10.1002/etc.3637. PubMed DOI

Richmond E. K.; Rosi-Marshall E. J.; Lee S. S.; Thompson R. M.; Grace M. R. Antidepressants in Stream Ecosystems: Influence of Selective Serotonin Reuptake Inhibitors (SSRIs) on Algal Production and Insect Emergence. Freshw. Sci. 2016, 35 (3), 845–855. 10.1086/687841. DOI

Grzesiuk M.; Spijkerman E.; Lachmann S. C.; Wacker A. Environmental Concentrations of Pharmaceuticals Directly Affect Phytoplankton and Effects Propagate through Trophic Interactions. Ecotoxicol. Environ. Saf. 2018, 156, 271–278. 10.1016/j.ecoenv.2018.03.019. PubMed DOI

Péry A.; Gust M.; Vollat B.; Mons R.; Ramil M.; Fink G.; Ternes T.; Garric J. Fluoxetine Effects Assessment on the Life Cycle of Aquatic Invertebrates. Chemosphere 2008, 73 (3), 300–304. 10.1016/j.chemosphere.2008.06.029. PubMed DOI

Richmond E. K.; Rosi E. J.; Reisinger A. J.; Hanrahan B. R.; Thompson R. M.; Grace M. R. Influences of the Antidepressant Fluoxetine on Stream Ecosystem Function and Aquatic Insect Emergence at Environmentally Realistic Concentrations. J. Freshwater Ecol. 2019, 34 (1), 513–531. 10.1080/02705060.2019.1629546. DOI

Martin J. M.; Nagarajan-Radha V.; Tan H.; Bertram M. G.; Brand J. A.; Saaristo M.; Dowling D. K.; Wong B. B. M. Antidepressant Exposure Causes a Nonmonotonic Reduction in Anxiety-Related Behaviour in Female Mosquitofish. J. Hazard. Mater. Lett. 2020, 1, 100004.10.1016/j.hazl.2020.100004. DOI

Tan H.; Martin J. M.; Alton L. A.; Lesku J. A.; Wong B. B. M. Widespread Psychoactive Pollutant Augments Daytime Restfulness and Disrupts Diurnal Activity Rhythms in Fish. Chemosphere 2023, 326, 138446.10.1016/j.chemosphere.2023.138446. PubMed DOI

Martin J. M.; Bertram M. G.; Saaristo M.; Fursdon J. B.; Hannington S. L.; Brooks B. W.; Burket S. R.; Mole R. A.; Deal N. D. S.; Wong B. B. M. Antidepressants in Surface Waters: Fluoxetine Influences Mosquitofish Anxiety-Related Behavior at Environmentally Relevant Levels. Environ. Sci. Technol. 2019, 53 (10), 6035–6043. 10.1021/acs.est.9b00944. PubMed DOI

Kennedy M. D.; Connaughton V. P. Differential Effects of Fluoxetine on the Phototactic Behavior of 3 Amphipod Species (Crustacea; Amphipoda). Environ. Toxicol. Pharmacol. 2022, 93, 103889.10.1016/j.etap.2022.103889. PubMed DOI

Martin J. M.; Saaristo M.; Tan H.; Bertram M. G.; Nagarajan-Radha V.; Dowling D. K.; Wong B. B. M. Field-Realistic Antidepressant Exposure Disrupts Group Foraging Dynamics in Mosquitofish. Biol. Lett. 2019, 15 (11), 20190615.10.1098/rsbl.2019.0615. PubMed DOI PMC

Henry J.; Brand J. A.; Bai Y.; Martin J. M.; Wong B. B. M.; Wlodkowic D. Multi-Generational Impacts of Exposure to Antidepressant Fluoxetine on Behaviour, Reproduction, and Morphology of Freshwater Snail Physa Acuta. Sci. Total Environ. 2022, 814, 152731.10.1016/j.scitotenv.2021.152731. PubMed DOI

Pyke G. H. Plague Minnow or Mosquito Fish? A Review of the Biology and Impacts of Introduced Gambusia Species. Annu. Rev. Ecol. Evol. Syst. 2008, 39 (1), 171–191. 10.1146/annurev.ecolsys.39.110707.173451. DOI

Ho S. S.; Bond N. R.; Lake P. S. Comparing Food-Web Impacts of a Native Invertebrate and an Invasive Fish as Predators in Small Floodplain Wetlands. Mar. Freshwater Res. 2011, 62, 372–382. 10.1071/MF10222. DOI

Rettig J. E.; Smith G. R. Relative Strength of Top-down Effects of an Invasive Fish and Bottom-up Effects of Nutrient Addition in a Simple Aquatic Food Web. Environ. Sci. Pollut. Res. Int. 2021, 28 (5), 5845–5853. 10.1007/s11356-020-10933-7. PubMed DOI

Preston D. L.; Hedman H. D.; Esfahani E. R.; Pena E. M.; Boland C. E.; Lunde K. B.; Johnson P. T. J. Responses of a Wetland Ecosystem to the Controlled Introduction of Invasive Fish. Freshwater Biol. 2017, 62 (4), 767–778. 10.1111/fwb.12900. DOI

Bertram M. G.; Ecker T. E.; Wong B. B. M.; O’Bryan M. K.; Baumgartner J. B.; Martin J. M.; Saaristo M. The Antidepressant Fluoxetine Alters Mechanisms of Pre- and Post-Copulatory Sexual Selection in the Eastern Mosquitofish (Gambusia Holbrooki). Environ. Pollut. 2018, 238, 238–247. 10.1016/j.envpol.2018.03.006. PubMed DOI

Meijide F. J.; Da Cuña R. H.; Prieto J. P.; Dorelle L. S.; Babay P. A.; Lo Nostro F. L. Effects of Waterborne Exposure to the Antidepressant Fluoxetine on Swimming, Shoaling and Anxiety Behaviours of the Mosquitofish Gambusia Holbrooki. Ecotoxicol. Environ. Saf. 2018, 163, 646–655. 10.1016/j.ecoenv.2018.07.085. PubMed DOI

Polverino G.; Martin J. M.; Bertram M. G.; Soman V. R.; Tan H.; Brand J. A.; Mason R. T.; Wong B. B. M. Psychoactive Pollution Suppresses Individual Differences in Fish Behaviour. Proc. R. Soc. B 2021, 288 (1944), 20202294.10.1098/rspb.2020.2294. PubMed DOI PMC

Tan H.; Polverino G.; Martin J. M.; Bertram M. G.; Wiles S. C.; Palacios M. M.; Bywater C. L.; White C. R.; Wong B. B. M. Chronic Exposure to a Pervasive Pharmaceutical Pollutant Erodes Among-Individual Phenotypic Variation in a Fish. Environ. Pollut. 2020, 263, 114450.10.1016/j.envpol.2020.114450. PubMed DOI

McCallum E. S.; Cerveny D.; Bose A. P. H.; Fick J.; Brodin T. Cost-Effective Pharmaceutical Implants in Fish: Validating the Performance of Slow-Release Implants for the Antidepressant Fluoxetine. Environ. Toxicol. Chem. 2023, 42 (6), 1326–1336. 10.1002/etc.5613. PubMed DOI

Cerveny D.; Brodin T.; Cisar P.; McCallum E. S.; Fick J. Bioconcentration and Behavioral Effects of Four Benzodiazepines and Their Environmentally Relevant Mixture in Wild Fish. Sci. Total Environ. 2020, 702, 134780.10.1016/j.scitotenv.2019.134780. PubMed DOI

Peig J.; Green A. J. New Perspectives for Estimating Body Condition from Mass/Length Data: The Scaled Mass Index as an Alternative Method. Oikos 2009, 118 (12), 1883–1891. 10.1111/j.1600-0706.2009.17643.x. DOI

Warton D. I.; Duursma R. A.; Falster D. S.; Taskinen S. smatr 3– an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 2012, 3, 257–259. 10.1111/j.2041-210X.2011.00153.x. DOI

R Core Team . R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022.

Bürkner P. C. Brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80 (1), 1–28. 10.18637/jss.v080.i01. DOI

Stan Development Team Stan Modeling Language Users Guide and Reference Manual, v.2.33.0, (2023). https://mc-stan.org (accessed Nov 12, 2020).

McElreath R.Statistical Rethinking: A Bayesian Course with Examples in R and Stan; CRC Press, 2016; Vol. 122.

Wickham H.; Chang W.; Wickham M. H.. Create Elegant Data Visualisations Using the Grammar of Graphics. Package ‘ggplot2’, 2016, pp 1–189.2 (1),

Kay M.Tidybayes: Tidy Data and Geoms for Bayesian Models. R package version 3.0.4, 2023. https://mjskay.github.io/tidybayes/(accessed 15 March 2021).

Laird B. D.; Brain R. A.; Johnson D. J.; Wilson C. J.; Sanderson H.; Solomon K. R. Toxicity and Hazard of a Mixture of SSRIs to Zooplankton Communities Evaluated in Aquatic Microcosms. Chemosphere 2007, 69 (6), 949–954. 10.1016/j.chemosphere.2007.05.020. PubMed DOI

Heyland A.; Bastien T.; Halliwushka K. Transgenerational Reproductive Effects of Two Serotonin Reuptake Inhibitors after Acute Exposure in Daphnia Magna Embryos. Comp. Biochem. Physiol., Part C: Pharmacol., Toxicol. Endocrinol. 2020, 238, 108875.10.1016/j.cbpc.2020.108875. PubMed DOI

Lamichhane K.; Garcia S. N.; Huggett D. B.; Deangelis D. L.; La Point T. W. Exposures to a Selective Serotonin Reuptake Inhibitor (SSRI), Sertraline Hydrochloride, over Multiple Generations: Changes in Life History Traits in Ceriodaphnia Dubia. Ecotoxicol. Environ. Saf. 2014, 101, 124–130. 10.1016/j.ecoenv.2013.11.026. PubMed DOI

Schuijt L. M.; van Smeden J.; van Drimmelen C. K. E.; Buijse L. L.; Wu D.; Boerwinkel M.-C.; Belgers D. J. M.; Matser A. M.; Roessink I.; Heikamp-de Jong I.; Beentjes K. K.; Trimbos K. B.; Smidt H.; Van den Brink P. J. Effects of Antidepressant Exposure on Aquatic Communities Assessed by a Combination of Morphological Identification, Functional Measurements, Environmental DNA Metabarcoding and Bioassays. Chemosphere 2024, 349, 140706.10.1016/j.chemosphere.2023.140706. PubMed DOI

Hébert M.; Fugère V.; Beisner B. E.; Barbosa da Costa N.; Barrett R. D. H.; Bell G.; Shapiro B. J.; Yargeau V.; Gonzalez A.; Fussmann G. F. Widespread Agrochemicals Differentially Affect Zooplankton Biomass and Community Structure. Ecol. Appl. 2021, 31 (7), e0242310.1002/eap.2423. PubMed DOI

Duchet C.; Grabicová K.; Kolar V.; Lepšová O.; Švecová H.; Csercsa A.; Zdvihalová B.; Randák T.; Boukal D. S. Combined Effects of Climate Warming and Pharmaceuticals on a Tri-Trophic Freshwater Food Web. Water Res. 2024, 250, 121053.10.1016/j.watres.2023.121053. PubMed DOI

Aulsebrook L. C.; Wong B. B. M.; Hall M. D. Warmer Temperatures Limit the Effects of Antidepressant Pollution on Life-History Traits. Proc. R. Soc. B 2022, 289 (1968), 20212701.10.1098/rspb.2021.2701. PubMed DOI PMC

Campos B.; Piña B.; Barata C C. Mechanisms of Action of Selective Serotonin Reuptake Inhibitors in Daphnia Magna. Environ. Sci. Technol. 2012, 46 (5), 2943–2950. 10.1021/es203157f. PubMed DOI

Lopez L. K.; Gil M. A.; Crowley P. H.; Trimmer P. C.; Munson A.; Ligocki I. Y.; Michelangeli M.; Sih A. Integrating Animal Behaviour into Research on Multiple Environmental Stressors: A Conceptual Framework. Biol. Rev. Cambridge Philos. Soc. 2023, 98, 1345–1364. 10.1111/brv.12956. PubMed DOI

Rohr J. R.; Kerby J. L.; Sih A. Community Ecology as a Framework for Predicting Contaminant Effects. Trends Ecol. Evol. 2006, 21 (11), 606–613. 10.1016/j.tree.2006.07.002. PubMed DOI

Relyea R. A.; Hoverman J. T. Interactive Effects of Predators and a Pesticide on Aquatic Communities. Oikos 2008, 117 (11), 1647–1658. 10.1111/j.1600-0706.2008.16933.x. DOI

Van Donk E.; Peacor S.; Grosser K.; De Senerpont Domis L. N.; Lürling M. Pharmaceuticals May Disrupt Natural Chemical Information Flows and Species Interactions in Aquatic Systems: Ideas and Perspectives on a Hidden Global Change. Rev. Environ. Contam. Toxicol. 2016, 238, 91–105. 10.1007/398_2015_5002. PubMed DOI

Reisinger A. J.; Reisinger L. S.; Richmond E. K.; Rosi E. J. Exposure to a Common Antidepressant Alters Crayfish Behavior and Has Potential Subsequent Ecosystem Impacts. Ecosphere 2021, 12, e0352710.1002/ecs2.3527. DOI

Wan L.; Long Y.; Hui J.; Zhang H.; Hou Z.; Tan J.; Pan Y.; Sun S. Effect of Norfloxacin on Algae-Cladoceran Grazer-Larval Damselfly Food Chains: Algal Morphology-Mediated Trophic Cascades. Chemosphere 2020, 256, 127166.10.1016/j.chemosphere.2020.127166. PubMed DOI

Rivetti C.; Campos B.; Barata C. Low Environmental Levels of Neuro-Active Pharmaceuticals Alter Phototactic Behaviour and Reproduction in Daphnia Magna. Aquat. Toxicol. 2016, 170, 289–296. 10.1016/j.aquatox.2015.07.019. PubMed DOI

Gust M.; Buronfosse T.; Giamberini L.; Ramil M.; Mons R.; Garric J. Effects of Fluoxetine on the Reproduction of Two Prosobranch Mollusks: Potamopyrgus Antipodarum and Valvata Piscinalis. Environ. Pollut. 2009, 157 (2), 423–429. 10.1016/j.envpol.2008.09.040. PubMed DOI

Painter M. M.; Buerkley M. A.; Julius M. L.; Vajda A. M.; Norris D. O.; Barber L. B.; Furlong E. T.; Schultz M. M.; Schoenfuss H. L. Antidepressants at Environmentally Relevant Concentrations Affect Predator Avoidance Behavior of Larval Fathead Minnows (Pimephales Promelas). Environ. Toxicol. Chem. 2009, 28 (12), 2677–2684. 10.1897/08-556.1. PubMed DOI

De Lange H. J.; Noordoven W.; Murk A. J.; Lürling M.; Peeters E. T. H. M. Behavioural Responses of Gammarus Pulex (Crustacea, Amphipoda) to Low Concentrations of Pharmaceuticals. Aquat. Toxicol. 2006, 78 (3), 209–216. 10.1016/j.aquatox.2006.03.002. PubMed DOI

Vandenberg L. N.; Colborn T.; Hayes T. B.; Heindel J. J.; Jacobs D. R. Jr.; Lee D.-H.; Shioda T.; Soto A. M.; vom Saal F. S.; Welshons W. V.; Zoeller R. T.; Myers J. P. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocr. Rev. 2012, 33 (3), 378–455. 10.1210/er.2011-1050. PubMed DOI PMC

Agathokleous E. Environmental Hormesis, a Fundamental Non-Monotonic Biological Phenomenon with Implications in Ecotoxicology and Environmental Safety. Ecotoxicol. Environ. Saf. 2018, 148, 1042–1053. 10.1016/j.ecoenv.2017.12.003. DOI

Ramírez-Morales D.; Rojas-Jiménez K.; Castro-Gutiérrez V.; Rodríguez-Saravia S.; Vaglio-Garro A.; Araya-Valverde E.; Rodríguez-Rodríguez C. E. Ecotoxicological Effects of Ketoprofen and Fluoxetine and Their Mixture in an Aquatic Microcosm. Aquat. Toxicol. 2024, 271, 106924.10.1016/j.aquatox.2024.106924. PubMed DOI

Haiahem D.; Touati L.; Baaziz N.; Samraoui F.; Alfarhan A. H.; Samraoui B. Impact of Eastern Mosquitofish, Gambusia Holbrooki,on Temporary Ponds: Insights on How Predation May Structure Zooplankton Communities. Zool. Ecol. 2017, 27 (2), 124–132. 10.1080/21658005.2017.1337372. DOI

Grzesiuk M.; Gryglewicz E.; Bentkowski P.; Pijanowska J. Impact of Fluoxetine on Herbivorous Zooplankton and Planktivorous Fish. Environ. Toxicol. Chem. 2023, 42 (2), 385–392. 10.1002/etc.5525. PubMed DOI PMC

Hedgespeth M. L.; Nilsson P. A.; Berglund O. Ecological Implications of Altered Fish Foraging after Exposure to an Antidepressant Pharmaceutical. Aquat. Toxicol. 2014, 151, 84–87. 10.1016/j.aquatox.2013.12.011. PubMed DOI

Rodrigues A. C. M.; Machado A. L.; Bordalo M. D.; Saro L.; Simão F. C. P.; Rocha R. J. M.; Golovko O.; Žlábek V.; Barata C.; Soares A. M.; et al. Invasive Species Mediate Insecticide Effects on Community and Ecosystem Functioning. Environ. Sci. Technol. 2018, 52 (8), 4889–4900. 10.1021/acs.est.8b00193. PubMed DOI

Geyer R. L.; Smith G. R.; Rettig J. E. Effects of Roundup Formulations, Nutrient Addition, and Western Mosquitofish (Gambusia Affinis) on Aquatic Communities. Environ. Sci. Pollut. Res. 2016, 23 (12), 11729–11739. 10.1007/s11356-016-6381-2. PubMed DOI

Fahlman J.; Hellström G.; Jonsson M.; Fick J. B.; Rosvall M.; Klaminder J. Impacts of Oxazepam on Perch (Perca Fluviatilis) Behavior: Fish Familiarized to Lake Conditions Do Not Show Predicted Anti-Anxiety Response. Environ. Sci. Technol. 2021, 55 (6), 3624–3633. 10.1021/acs.est.0c05587. PubMed DOI PMC

Vossen L. E.; Červený D.; Sen Sarma O.; Thörnqvist P. O.; Jutfelt F.; Fick J.; Brodin T.; Winberg S. Low Concentrations of the Benzodiazepine Drug Oxazepam Induce Anxiolytic Effects in Wild-Caught but Not in Laboratory Zebrafish. Sci. Total Environ. 2020, 703, 134701.10.1016/j.scitotenv.2019.134701. PubMed DOI

Herculano A. M.; Maximino C. Serotonergic Modulation of Zebrafish Behavior: Towards a Paradox. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 55, 50–66. 10.1016/j.pnpbp.2014.03.008. PubMed DOI

Fischer B. B.; Pomati F.; Eggen R. I. L. The Toxicity of Chemical Pollutants in Dynamic Natural Systems: The Challenge of Integrating Environmental Factors and Biological Complexity. Sci. Total Environ. 2013, 449, 253–259. 10.1016/j.scitotenv.2013.01.066. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace