Pharmaceutical pollution disrupts the behavior and predator-prey interactions of two widespread aquatic insects
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36536674
PubMed Central
PMC9758520
DOI
10.1016/j.isci.2022.105672
PII: S2589-0042(22)01944-7
Knihovny.cz E-zdroje
- Klíčová slova
- Earth sciences, Ecology, Environmental chemistry, Environmental science, Natural sciences,
- Publikační typ
- časopisecké články MeSH
Pharmaceutical pollution represents a rapidly growing threat to ecosystems worldwide. Drugs are now commonly detected in the tissues of wildlife and have the potential to alter the natural expression of behavior, though relatively little is known about how pharmaceuticals impact predator-prey interactions. We conducted parallel laboratory experiments using larval odonates (dragonfly and damselfly nymphs) to investigate the effects of exposure to two pharmaceuticals, cetirizine and citalopram, and their mixture on the outcomes of predator-prey interactions. We found that exposure to both compounds elevated dragonfly activity and impacted their predation success and efficiency in complex ways. While exposure to citalopram reduced predation efficiency, exposure to cetirizine showed varied effects, with predation success being enhanced in some contexts but impaired in others. Our findings underscore the importance of evaluating pharmaceutical effects under multiple contexts and indicate that these compounds can affect predator-prey outcomes at sublethal concentrations.
Zobrazit více v PubMed
Escher B.I., Stapleton H.M., Schymanski E.L. Tracking complex mixtures of chemicals in our changing environment. Science. 2020;367:388–392. doi: 10.1126/science.aay6636. PubMed DOI PMC
EEA . European Environment Agency. Publications Office; LU: 2018. Chemicals for a Sustainable Future: Report of the EEA Scientific Committee Seminar: Copenhagen, 17 May 2017.
Bernhardt E.S., Rosi E.J., Gessner M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017;15:84–90. doi: 10.1002/fee.1450. DOI
Orive G., Lertxundi U., Brodin T., Manning P. Greening the pharmacy. Science. 2022;377:259–260. doi: 10.1126/science.abp9554. PubMed DOI
aus der Beek T., Weber F.A., Bergmann A., Hickmann S., Ebert I., Hein A., Küster A. Pharmaceuticals in the environment—global occurrences and perspectives. Environ. Toxicol. Chem. 2016;35:823–835. doi: 10.1002/etc.3339. PubMed DOI
Wilkinson J.L., Boxall A.B.A., Kolpin D.W., Leung K.M.Y., Lai R.W.S., Galbán-Malagón C., Adell A.D., Mondon J., Metian M., Marchant R.A., et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas.2113947119. PubMed DOI PMC
Bertram M.G., Martin J.M., Wong B.B.M., Brodin T. Curr. Biol. 2022;32:R17–R19. doi: 10.1016/j.cub.2021.11.038. PubMed DOI
Duarte I.A., Fick J., Cabral H.N., Fonseca V.F. Bioconcentration of neuroactive pharmaceuticals in fish: relation to lipophilicity, experimental design and toxicity in the aquatic environment. Sci. Total Environ. 2022;812 doi: 10.1016/j.scitotenv.2021.152543. PubMed DOI
Miller T.H., Bury N.R., Owen S.F., MacRae J.I., Barron L.P. A review of the pharmaceutical exposome in aquatic fauna. Environ. Pollut. 2018;239:129–146. doi: 10.1016/j.envpol.2018.04.012. PubMed DOI PMC
Emnet P., Gaw S., Northcott G., Storey B., Graham L. Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base. Environ. Res. 2015;136:331–342. doi: 10.1016/j.envres.2014.10.019. PubMed DOI
Arnnok P., Singh R.R., Burakham R., Pérez-Fuentetaja A., Aga D.S. Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River. Environ. Sci. Technol. 2017;51:10652–10662. doi: 10.1021/acs.est.7b02912. PubMed DOI
Richmond E.K., Rosi E.J., Walters D.M., Fick J., Hamilton S.K., Brodin T., Sundelin A., Grace M.R. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 2018;9:4491–4499. doi: 10.1038/s41467-018-06822-w. PubMed DOI PMC
Oaks J.L., Gilbert M., Virani M.Z., Watson R.T., Meteyer C.U., Rideout B.A., Shivaprasad H.L., Ahmed S., Chaudhry M.J.I., Arshad M., et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature. 2004;427:630–633. doi: 10.1038/nature02317. PubMed DOI
Kidd K.A., Blanchfield P.J., Mills K.H., Palace V.P., Evans R.E., Lazorchak J.M., Flick R.W. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl. Acad. Sci. USA. 2007;104:8897–8901. doi: 10.1073/pnas.0609568104. PubMed DOI PMC
Adeel M., Song X., Wang Y., Francis D., Yang Y. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ. Int. 2017;99:107–119. doi: 10.1016/j.envint.2016.12.010. PubMed DOI
Aulsebrook L.C., Bertram M.G., Martin J.M., Aulsebrook A.E., Brodin T., Evans J.P., Hall M.D., O’Bryan M.K., Pask A.J., Tyler C.R., Wong B.B.M. Reproduction in a polluted world: implications for wildlife. Reproduction. 2020;160:R13–R23. doi: 10.1530/REP-20-0154. PubMed DOI
Agathokleous E., Barceló D., Aschner M., Azevedo R.A., Bhattacharya P., Costantini D., Cutler G.C., De Marco A., Docea A.O., Dórea J.G., et al. Rethinking subthreshold effects in regulatory chemical risk assessments. Environ. Sci. Technol. 2022;56:11095–11099. doi: 10.1021/acs.est.2c02896. PubMed DOI
Bertram M.G., Gore A.C., Tyler C.R., Brodin T. Endocrine-disrupting chemicals. Curr. Biol. 2022;32:R727–R730. PubMed
Saaristo M., Brodin T., Balshine S., Bertram M.G., Brooks B.W., Ehlman S.M., McCallum E.S., Sih A., Sundin J., Wong B.B.M., Arnold K.E. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc. Biol. Sci. 2018;285 doi: 10.1098/rspb.2018.1297. PubMed DOI PMC
Michelangeli M., Martin J.M., Pinter-Wollman N., Ioannou C.C., McCallum E.S., Bertram M.G., Brodin T. Predicting the impacts of chemical pollutants on animal groups. Trends Ecol. Evol. 2022;37:789–802. doi: 10.1016/j.tree.2022.05.009. PubMed DOI
Wong B.B.M., Candolin U. Behavioral responses to changing environments. Behav. Ecol. 2015;26:665–673. doi: 10.1093/beheco/aru183. DOI
Brodin T., Fick J., Jonsson M., Klaminder J. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science. 2013;339:814–815. PubMed
Markman S., Leitner S., Catchpole C., Barnsley S., Müller C.T., Pascoe D., Buchanan K.L. Pollutants increase song complexity and the volume of the brain area HVC in a songbird. PLoS One. 2008;3:e1674. doi: 10.1371/journal.pone.0001674. PubMed DOI PMC
Martin J.M., McCallum E.S. Incorporating animal social context in ecotoxicology: can a single individual tell the collective story? Environ. Sci. Technol. 2021;55:10908–10910. doi: 10.1021/acs.est.1c04528. PubMed DOI PMC
Schmitz O.J. Effects of predator hunting mode on grassland ecosystem function. Science. 2008;319:952–954. doi: 10.1126/science.1152355. PubMed DOI
Weis J.S., Smith G., Santiago-Bass C. Predator/prey interactions: a link between the individual level and both higher and lower level effects of toxicants in aquatic ecosystems. J. Aquat. Ecosys. Stress Recov. 2000;7:145–153. doi: 10.1023/A:1009923414208. DOI
McPeek M.A. Behavioral differences between Enallagma species (Odonata) influencing differential vulnerability to predators. Ecology. 1990;71:1714–1726. doi: 10.2307/1937580. DOI
Corbet P.S. Harley books; 1999. Dragonflies: Behaviour and Ecology of Odonata.
Stoks R. Effect of lamellae autotomy on survival and foraging success of the damselfly Lestes sponsa (Odonata: lestidae) Oecologia. 1998;117:443–448. doi: 10.1007/s004420050679. PubMed DOI
Bose A.P.H., Robinson B.W. Invertebrate predation predicts variation in an autotomy-related trait in larval damselfly. Evol. Ecol. 2013;27:27–38. doi: 10.1007/s10682-012-9581-3. DOI
Ferreras-Romero M., Márquez-Rodríguez J., Ruiz-García A. Implications of anthropogenic disturbance factors on the Odonata assemblage in a Mediterranean fluvial system. Int. J. Odonatol. 2009;12:413–428. doi: 10.1080/13887890.2009.9748354. DOI
Perron M.A.C., Pick F.R. Water quality effects on dragonfly and damselfly nymph communities: a comparison of urban and natural ponds. Environ. Pollut. 2020;263 doi: 10.1016/j.envpol.2020.114472. PubMed DOI
Kristofco L.A., Brooks B.W. Global scanning of antihistamines in the environment: analysis of occurrence and hazards in aquatic systems. Sci. Total Environ. 2017;592:477–487. doi: 10.1016/j.scitotenv.2017.03.120. PubMed DOI
Almeida Â., Calisto V., Esteves V.I., Schneider R.J., Soares A.M.V.M., Figueira E., Freitas R. Ecotoxicity of the antihistaminic drug cetirizine to Ruditapes philippinarum clams. Sci. Total Environ. 2017;601–602:793–801. doi: 10.1016/j.scitotenv.2017.05.149. PubMed DOI
Li M.H. Acute toxicity of 30 pharmaceutically active compounds to freshwater planarians. Toxicol. Environ. Chem. 2013;95:1157–1170. doi: 10.1080/02772248.2013.857671. DOI
Jonsson M., Fick J., Klaminder J., Brodin T. Antihistamines and aquatic insects: bioconcentration and impacts on behavior in damselfly larvae (Zygoptera) Sci. Total Environ. 2014;472:108–111. doi: 10.1016/j.scitotenv.2013.10.104. PubMed DOI
Jonsson M., Andersson M., Fick J., Brodin T., Klaminder J., Piovano S. High-speed imaging reveals how antihistamine exposure affects escape behaviours in aquatic insect prey. Sci. Total Environ. 2019;648:1257–1262. doi: 10.1016/j.scitotenv.2018.08.226. PubMed DOI
Tierney A.J. Feeding, hunger, satiety and serotonin in invertebrates. Proc. Biol. Sci. 2020;287 doi: 10.1098/rspb.2020.1386. PubMed DOI PMC
Perry C.J., Baciadonna L. Studying emotion in invertebrates: what has been done, what can be measured and what they can provide. J. Exp. Biol. 2017;220:3856–3868. doi: 10.1242/jeb.151308. PubMed DOI
Ravhe I.S., Krishnan A., Manoj N. Evolutionary history of histamine receptors: early vertebrate origin and expansion of the H3-H4 subtypes. Mol. Phylogenet. Evol. 2021;154 doi: 10.1016/j.ympev.2020.106989. PubMed DOI
Nässel D.R. Histamine in the brain of insects: a review. Microsc. Res. Tech. 1999;44:121–136. doi: 10.1002/(SICI)1097-0029(19990115/01)44:2/3<121::AID-JEMT6>3.0.CO;2. PubMed DOI
Brodin T., Johansson F. Conflicting selection pressures on the growth/predation-risk trade-off in a damselfly. Ecology. 2004;85:2927–2932. doi: 10.1890/03-3120. DOI
Stahl S.M. Mechanism of action of serotonin selective reuptake inhibitors: serotonin receptors and pathways mediate therapeutic effects and side effects. J. Affect. Disord. 1998;51:215–235. doi: 10.1016/S0165-0327(98)00221-3. PubMed DOI
Fong P.P., Hoy C.M. Antidepressants (venlafaxine and citalopram) cause foot detachment from the substrate in freshwater snails at environmentally relevant concentrations. Mar. Freshw. Behav. Physiol. 2012;45:145–153. doi: 10.1080/10236244.2012.690579. DOI
Kellner M., Porseryd T., Hallgren S., Porsch-Hällström I., Hansen S.H., Olsén K.H. Waterborne citalopram has anxiolytic effects and increases locomotor activity in the three-spine stickleback (Gasterosteus aculeatus) Aquat. Toxicol. 2016;173:19–28. doi: 10.1016/j.aquatox.2015.12.026. PubMed DOI
Kellner M., Porseryd T., Porsch-Hällström I., Hansen S.H., Olsén K.H. Environmentally relevant concentrations of citalopram partially inhibit feeding in the three-spine stickleback (Gasterosteus aculeatus) Aquat. Toxicol. 2015;158:165–170. doi: 10.1016/j.aquatox.2014.11.003. PubMed DOI
Ziegler M., Eckstein H., Köhler H.R., Tisler S., Zwiener C., Triebskorn R. Effects of the antidepressants citalopram and venlafaxine on the big ramshorn snail (Planorbarius corneus) Water. 2021;13:1722. doi: 10.3390/w13131722. DOI
Ziegler M., Knoll S., Köhler H.R., Tisler S., Huhn C., Zwiener C., Triebskorn R. Impact of the antidepressant citalopram on the behaviour of two different life stages of brown trout. PeerJ. 2020;8 doi: 10.7717/peerj.8765. PubMed DOI PMC
Minguez L., Farcy E., Ballandonne C., Lepailleur A., Serpentini A., Lebel J.M., Bureau R., Halm-Lemeille M.P. Acute toxicity of 8 antidepressants: what are their modes of action? Chemosphere. 2014;108:314–319. doi: 10.1016/j.chemosphere.2014.01.057. PubMed DOI
Bláha M., Grabicova K., Shaliutina O., Kubec J., Randák T., Zlabek V., Buřič M., Veselý L. Foraging behaviour of top predators mediated by pollution of psychoactive pharmaceuticals and effects on ecosystem stability. Sci. Total Environ. 2019;662:655–661. doi: 10.1016/j.scitotenv.2019.01.295. PubMed DOI
Hirvonen H., Ranta E. Prey to predator size ratio influences foraging efficiency of larval Aeshna juncea dragonflies. Oecologia. 1996;106:407–415. doi: 10.1007/BF00334569. PubMed DOI
Brauer R., Alfageh B., Blais J.E., Chan E.W., Chui C.S.L., Hayes J.F., Man K.K.C., Lau W.C.Y., Yan V.K.C., Beykloo M.Y., et al. Psychotropic medicine consumption in 65 countries and regions, 2008–19: a longitudinal study. Lancet Psychiatr. 2021;8:1071–1082. doi: 10.1016/S2215-0366(21)00292-3. PubMed DOI PMC
Cunha D.L., de Araujo F.G., Marques M. Psychoactive drugs: occurrence in aquatic environment, analytical methods, and ecotoxicity—a review. Environ. Sci. Pollut. Res. Int. 2017;24:24076–24091. doi: 10.1007/s11356-017-0170-4. PubMed DOI
McCallum E.S., Cerveny D., Fick J., Brodin T. Slow-release implants for manipulating contaminant exposures in aquatic wildlife: a new tool for field ecotoxicology. Environ. Sci. Technol. 2019;53:8282–8290. doi: 10.1021/acs.est.9b01975. PubMed DOI
Cerveny D., Brodin T., Cisar P., McCallum E.S., Fick J. Bioconcentration and behavioral effects of four benzodiazepines and their environmentally relevant mixture in wild fish. Sci. Total Environ. 2020;702 doi: 10.1016/j.scitotenv.2019.134780. PubMed DOI
Burnside C.A., Robinson J.V. The functional morphology of caudal lamellae in coenagrionid (Odonata: zygoptera) damselfly larvae. Zool. J. Linn. Soc. 1995;114:155–171. doi: 10.1111/j.1096-3642.1995.tb00117a.x. DOI
Brooks M., Kristensen K., Benthem K., Magnusson A., Berg C., Nielsen A., Skaug H., Mächler M., Bolker B. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378–400. doi: 10.3929/ethz-b-000240890. DOI
Therneau T.M. 2022. Mixed Effects Cox Models [R Package Coxme.
Smithson M., Verkuilen J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods. 2006;11:54–71. doi: 10.1037/1082-989X.11.1.54. PubMed DOI
R Core Team R: a Language and environment for statistical computing. 2021. www.R-project.org