Targeting Hsp70 Immunosuppressive Signaling Axis with Lipid Nanovesicles: A Novel Approach to Treat Pancreatic Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-65-QIXI
Pancreatic Cancer Action Network - United States
R01-CA158372
NIH HHS - United States
2UL1TR001425-05A1
NIH HHS - United States
R01-DK116789
NIH HHS - United States
22-17102S
Czech Science Foundation grant
PubMed
40227806
PubMed Central
PMC11988048
DOI
10.3390/cancers17071224
PII: cancers17071224
Knihovny.cz E-zdroje
- Klíčová slova
- M2 macrophage polarization, Saposin C-coupled dioleoylphosphatidylglycerol (SapC-DOPG), cancer cell-secreted Hsp70, dioleoylphosphatidylglycerol (DOPG), immunotherapy, pancreatic cancer, phosphatidylserine, targeting therapy,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Despite many efforts to effectively treat PDAC, PDAC carries one of the highest mortality rates of all major cancers. Thus, there is a critical unmet need to develop novel approaches to improve the clinical outcome of PDAC. It is well known that many cancers, including PDAC, generate a local TME that allows cancer to escape normal immune surveillance. Phosphatidylserine (PS), a negatively charged phospholipid that is abundant on the cancer cell membrane and with known actions to promote the secretion of immunomodulatory proteins, may provide a mechanism to regulate the TME. This study explored that possibility. METHODS: MΦ differentiation and polarization were assessed by Western blotting and flow cytometric approaches. PS exposure and surface markers were analyzed by flow cytometry. Protein-protein and protein-lipid interactions were analyzed by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Phospholipid and SapC-DOPG treatment were employed to assess target protein functions in MΦ polarization, tumor growth, and survival in subcutaneous and orthotopic tumor models. The PK-PD and safety of SapC-DOPG were tested on orthotopic mouse models. RESULTS: Our studies show that PDAC secretes Hsp70 that stimulates the MΦ polarization to the immunosuppressive M2 phenotype. We found that high surface PS on cancer cells correlates with increased secretion of Hsp70 and is associated with higher MΦ differentiation activity in vitro and in vivo. Furthermore, blocking cancer cell-secreted Hsp70 with SapC-DOPG reverses the immune suppression and reduces tumor growth. CONCLUSIONS: These preclinical results reveal a novel immunotherapeutic approach to potentially improve the outcome of PDAC treatment in humans.
Zobrazit více v PubMed
Binnewies M., Roberts E.W., Kersten K., Chan V., Fearon D.F., Merad M., Coussens L.M., Gabrilovich D.I., Ostrand-Rosenberg S., Hedrick C.C., et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018;24:541–550. doi: 10.1038/s41591-018-0014-x. PubMed DOI PMC
Rabinovich G.A., Gabrilovich D., Sotomayor E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 2007;25:267–296. doi: 10.1146/annurev.immunol.25.022106.141609. PubMed DOI PMC
Bejarano L., Jordāo M.J.C., Joyce J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021;11:933–959. doi: 10.1158/2159-8290.Cd-20-1808. PubMed DOI
Yap T.A., Parkes E.E., Peng W., Moyers J.T., Curran M.A., Tawbi H.A. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021;11:1368–1397. doi: 10.1158/2159-8290.Cd-20-1209. PubMed DOI PMC
Mantovani A., Marchesi F., Malesci A., Laghi L., Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017;14:399–416. PubMed PMC
Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F., et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013;23:249–262. doi: 10.1016/j.ccr.2013.01.008. PubMed DOI
Yao L., Wang M., Niu Z., Liu Q., Gao X., Zhou L., Liao Q., Zhao Y. Interleukin-27 inhibits malignant behaviors of pancreatic cancer cells by targeting M2 polarized tumor associated macrophages. Cytokine. 2017;89:194–200. doi: 10.1016/j.cyto.2015.12.003. PubMed DOI
Candido J.B., Morton J.P., Bailey P., Campbell A.D., Karim S.A., Jamieson T., Lapienyte L., Gopinathan A., Clark W., McGhee E.J., et al. CSF1R(+) Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. Cell Rep. 2018;23:1448–1460. doi: 10.1016/j.celrep.2018.03.131. PubMed DOI PMC
Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022;72:7–33. doi: 10.3322/caac.21708. PubMed DOI
Capurso G., Sette C. Drug resistance in pancreatic cancer: New player caught in act. EBioMedicine. 2019;40:39–40. doi: 10.1016/j.ebiom.2019.02.008. PubMed DOI PMC
Vallabhapurapu S.D., Blanco V.M., Sulaiman M.K., Vallabhapurapu S.L., Chu Z., Franco R.S., Qi X. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget. 2015;6:34375–34388. doi: 10.18632/oncotarget.6045. PubMed DOI PMC
Birge R.B., Boeltz S., Kumar S., Carlson J., Wanderley J., Calianese D., Barcinski M., Brekken R.A., Huang X., Hutchins J.T., et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23:962–978. doi: 10.1038/cdd.2016.11. PubMed DOI PMC
Riedl S., Rinner B., Asslaber M., Schaider H., Walzer S., Novak A., Lohner K., Zweytick D. In search of a novel target—Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim. Biophys. Acta (BBA) Biomembr. 2011;1808:2638–2645. doi: 10.1016/j.bbamem.2011.07.026. PubMed DOI PMC
N’Guessan K.F., Davis H.W., Chu Z., Vallabhapurapu S.D., Lewis C.S., Franco R.S., Olowokure O., Ahmad S.A., Yeh J.J., Bogdanov V.Y., et al. Enhanced Efficacy of Combination of Gemcitabine and Phosphatidylserine-Targeted Nanovesicles against Pancreatic Cancer. Mol. Ther. J. Am. Soc. Gene Ther. 2020;28:1876–1886. doi: 10.1016/j.ymthe.2020.05.013. PubMed DOI PMC
Phinney N.Z., Huang X., Toombs J.E., Brekken R.A. Development of betabodies: The next generation of phosphatidylserine targeting agents. J. Biol. Chem. 2024;300:107681. doi: 10.1016/j.jbc.2024.107681. PubMed DOI PMC
Hsiehchen D., Beg M.S., Kainthla R., Lohrey J., Kazmi S.M., Khosama L., Maxwell M.C., Kline H., Katz C., Hassan A., et al. The phosphatidylserine targeting antibody bavituximab plus pembrolizumab in unresectable hepatocellular carcinoma: A phase 2 trial. Nat. Commun. 2024;15:2178. doi: 10.1038/s41467-024-46542-y. PubMed DOI PMC
Qi X., Leonova T., Grabowski G.A. Functional human saposins expressed in Escherichia coli. Evidence for binding and activation properties of saposins C with acid beta-glucosidase. J. Biol. Chem. 1994;269:16746–16753. doi: 10.1016/S0021-9258(19)89454-1. PubMed DOI
Qi X., Chu Z., Mahller Y.Y., Stringer K.F., Witte D.P., Cripe T.P. Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein. Clin. Cancer Res. 2009;15:5840–5851. doi: 10.1158/1078-0432.CCR-08-3285. PubMed DOI
Chu Z., Abu-Baker S., Palascak M.B., Ahmad S.A., Franco R.S., Qi X. Targeting and cytotoxicity of SapC-DOPS nanovesicles in pancreatic cancer. PLoS ONE. 2013;8:e75507. doi: 10.1371/journal.pone.0075507. PubMed DOI PMC
Sulaiman M.K., Chu Z., Blanco V.M., Vallabhapurapu S.D., Franco R.S., Qi X. SapC-DOPS nanovesicles induce Smac- and Bax-dependent apoptosis through mitochondrial activation in neuroblastomas. Mol. Cancer. 2015;14:78. doi: 10.1186/s12943-015-0336-y. PubMed DOI PMC
Ellis J. Proteins as molecular chaperones. Nature. 1987;328:378–379. doi: 10.1038/328378a0. PubMed DOI
Rosenzweig R., Nillegoda N.B., Mayer M.P., Bukau B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019;20:665–680. doi: 10.1038/s41580-019-0133-3. PubMed DOI
Mayer M.P., Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005;62:670–684. doi: 10.1007/s00018-004-4464-6. PubMed DOI PMC
Albakova Z., Armeev G.A., Kanevskiy L.M., Kovalenko E.I., Sapozhnikov A.M. HSP70 Multi-Functionality in Cancer. Cells. 2020;9:587. doi: 10.3390/cells9030587. PubMed DOI PMC
Sherman M.Y., Gabai V.L. Hsp70 in cancer: Back to the future. Oncogene. 2015;34:4153–4161. doi: 10.1038/onc.2014.349. PubMed DOI PMC
Mambula S.S., Calderwood S.K. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J. Immunol. 2006;177:7849–7857. doi: 10.4049/jimmunol.177.11.7849. PubMed DOI
Blott E.J., Griffiths G.M. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 2002;3:122–131. doi: 10.1038/nrm732. PubMed DOI
Broquet A.H., Thomas G., Masliah J., Trugnan G., Bachelet M. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J. Biol. Chem. 2003;278:21601–21606. doi: 10.1074/jbc.M302326200. PubMed DOI
Nitika, Truman A.W. Cracking the Chaperone Code: Cellular Roles for Hsp70 Phosphorylation. Trends Biochem. Sci. 2017;42:932–935. PubMed PMC
Zemanovic S., Ivanov M.V., Ivanova L.V., Bhatnagar A., Michalkiewicz T., Teng R.J., Kumar S., Rathore R., Pritchard K.A., Jr., Konduri G.G., et al. Dynamic Phosphorylation of the C Terminus of Hsp70 Regulates the Mitochondrial Import of SOD2 and Redox Balance. Cell Rep. 2018;25:2605–2616. doi: 10.1016/j.celrep.2018.11.015. PubMed DOI PMC
Rohde M., Daugaard M., Jensen M.H., Helin K., Nylandsted J., Jaattela M. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 2005;19:570–582. doi: 10.1101/gad.305405. PubMed DOI PMC
Juhasz K., Lipp A.M., Nimmervoll B., Sonnleitner A., Hesse J., Haselgruebler T., Balogi Z. The complex function of hsp70 in metastatic cancer. Cancers. 2013;6:42–66. doi: 10.3390/cancers6010042. PubMed DOI PMC
Kaynak A., Vallabhapurapu S.D., Davis H.W., Smith E.P., Muller P., Vojtesek B., Franco R.S., Shao W.-H., Qi X. TLR2-Bound Cancer-Secreted Hsp70 Induces MerTK-Mediated Immunosuppression and Tumorigenesis in Solid Tumors. Cancers. 2025;17:450. doi: 10.3390/cancers17030450. PubMed DOI PMC
Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC
Mambula S.S., Stevenson M.A., Ogawa K., Calderwood S.K. Mechanisms for Hsp70 secretion: Crossing membranes without a leader. Methods. 2007;43:168–175. doi: 10.1016/j.ymeth.2007.06.009. PubMed DOI PMC
Liang X., Luo M., Shao B., Yang J.Y., Tong A., Wang R.B., Liu Y.T., Jun R., Liu T., Yi T., et al. Phosphatidylserine released from apoptotic cells in tumor induces M2-like macrophage polarization through the PSR-STAT3-JMJD3 axis. Cancer Commun. 2022;42:205–222. doi: 10.1002/cac2.12272. PubMed DOI PMC
Schilling D., Gehrmann M., Steinem C., De Maio A., Pockley A.G., Abend M., Molls M., Multhoff G. Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2009;23:2467–2477. doi: 10.1096/fj.08-125229. PubMed DOI PMC
Utsugi T., Schroit A.J., Connor J., Bucana C.D., Fidler I.J. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 1991;51:3062–3066. PubMed
McCallister C., Kdeiss B., Nikolaidis N. Biochemical characterization of the interaction between HspA1A and phospholipids. Cell Stress Chaperones. 2016;21:41–53. doi: 10.1007/s12192-015-0636-6. PubMed DOI PMC
Dagogo-Jack I., Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018;15:81–94. doi: 10.1038/nrclinonc.2017.166. PubMed DOI
Jacquemin V., Antoine M., Dom G., Detours V., Maenhaut C., Dumont J.E. Dynamic Cancer Cell Heterogeneity: Diagnostic and Therapeutic Implications. Cancers. 2022;14:280. doi: 10.3390/cancers14020280. PubMed DOI PMC
Smulders L., Daniels A.J., Plescia C.B., Berger D., Stahelin R.V., Nikolaidis N. Characterization of the Relationship between the Chaperone and Lipid-Binding Functions of the 70-kDa Heat-Shock Protein, HspA1A. Int. J. Mol. Sci. 2020;21:5995. doi: 10.3390/ijms21175995. PubMed DOI PMC
Kuo J.H., Jan M.S., Jeng J., Chiu H.W. Induction of apoptosis in macrophages by air oxidation of dioleoylphosphatidylglycerol. J. Control. Release. 2005;108:442–452. doi: 10.1016/j.jconrel.2005.08.026. PubMed DOI
Menjivar R.E., Nwosu Z.C., Du W., Donahue K.L., Hong H.S., Espinoza C., Brown K., Velez-Delgado A., Yan W., Lima F., et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife. 2023;12:e80721. doi: 10.7554/eLife.80721. PubMed DOI PMC
Tempest R., Guarnerio S., Maani R., Cooper J., Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers. 2021;13:2788. doi: 10.3390/cancers13112788. PubMed DOI PMC
Wojton J., Meisen W.H., Jacob N.K., Thorne A.H., Hardcastle J., Denton N., Chu Z., Dmitrieva N., Marsh R., Van Meir E.G., et al. SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma. Oncotarget. 2014;5:9703–9709. doi: 10.18632/oncotarget.2232. PubMed DOI PMC
Zhao S., Chu Z., Blanco V.M., Nie Y., Hou Y., Qi X. SapC-DOPS nanovesicles as targeted therapy for lung cancer. Mol. Cancer Ther. 2015;14:491–498. doi: 10.1158/1535-7163.MCT-14-0661. PubMed DOI PMC
Abdelbaki M.S., DeWire Schottmiller M.D., Cripe T.P., Curry R.C., Cruze C.A., Her L., Demko S., Casey D., Setty B. An open-label multi-center phase 1 safety study of BXQ-350 in children and young adults with relapsed solid tumors, including recurrent malignant brain tumors. Heliyon. 2022;8:e12450. doi: 10.1016/j.heliyon.2022.e12450. PubMed DOI PMC
Rixe O., Villano J.L., Wesolowski R., Noonan A.M., Puduvalli V.K., Wise-Draper T.M., Curry R., 3rd, Yilmaz E., Cruze C., Ogretmen B., et al. A First-in-Human Phase I Study of BXQ-350, a First-in-Class Sphingolipid Metabolism Regulator, in Patients with Advanced/Recurrent Solid Tumors or High-Grade Gliomas. Clin. Cancer Res. 2024;30:5053–5060. doi: 10.1158/1078-0432.Ccr-24-1721. PubMed DOI
Patel R.A., Baron A.D., Boulmay B.C., Flora D.B., Gemmill J.A.L., Lee F.C., Sohal D., Williams G.R., Curry R.C., Gazda M., et al. BXQ-350: A phase 1b/2 placebo controlled, double blinded study on the efficacy and safety of BXQ-350 in combination with mFOLFOX7 and bevacizumab in newly diagnosed metastatic colorectal carcinoma (mCRC) J. Clin. Oncol. 2024;42:TPS224. doi: 10.1200/JCO.2024.42.3_suppl.TPS224. DOI
Shin K., Kim J., Park S.J., Lee M.A., Park J.M., Choi M.-G., Kang D., Song K.Y., Lee H.H., Seo H.S., et al. Prognostic value of soluble PD-L1 and exosomal PD-L1 in advanced gastric cancer patients receiving systemic chemotherapy. Sci. Rep. 2023;13:6952. doi: 10.1038/s41598-023-33128-9. PubMed DOI PMC
Okuma Y., Hosomi Y., Nakahara Y., Watanabe K., Sagawa Y., Homma S. High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer. Lung Cancer. 2017;104:1–6. doi: 10.1016/j.lungcan.2016.11.023. PubMed DOI
Paladini L., Fabris L., Bottai G., Raschioni C., Calin G.A., Santarpia L. Targeting microRNAs as key modulators of tumor immune response. J. Exp. Clin. Cancer Res. 2016;35:103. doi: 10.1186/s13046-016-0375-2. PubMed DOI PMC
Khayati S., Dehnavi S., Sadeghi M., Tavakol Afshari J., Esmaeili S.-A., Mohammadi M. The potential role of miRNA in regulating macrophage polarization. Heliyon. 2023;9:e21615. doi: 10.1016/j.heliyon.2023.e21615. PubMed DOI PMC