Targeting Hsp70 Immunosuppressive Signaling Axis with Lipid Nanovesicles: A Novel Approach to Treat Pancreatic Cancer

. 2025 Apr 04 ; 17 (7) : . [epub] 20250404

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40227806

Grantová podpora
20-65-QIXI Pancreatic Cancer Action Network - United States
R01-CA158372 NIH HHS - United States
2UL1TR001425-05A1 NIH HHS - United States
R01-DK116789 NIH HHS - United States
22-17102S Czech Science Foundation grant

BACKGROUND: Despite many efforts to effectively treat PDAC, PDAC carries one of the highest mortality rates of all major cancers. Thus, there is a critical unmet need to develop novel approaches to improve the clinical outcome of PDAC. It is well known that many cancers, including PDAC, generate a local TME that allows cancer to escape normal immune surveillance. Phosphatidylserine (PS), a negatively charged phospholipid that is abundant on the cancer cell membrane and with known actions to promote the secretion of immunomodulatory proteins, may provide a mechanism to regulate the TME. This study explored that possibility. METHODS: MΦ differentiation and polarization were assessed by Western blotting and flow cytometric approaches. PS exposure and surface markers were analyzed by flow cytometry. Protein-protein and protein-lipid interactions were analyzed by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Phospholipid and SapC-DOPG treatment were employed to assess target protein functions in MΦ polarization, tumor growth, and survival in subcutaneous and orthotopic tumor models. The PK-PD and safety of SapC-DOPG were tested on orthotopic mouse models. RESULTS: Our studies show that PDAC secretes Hsp70 that stimulates the MΦ polarization to the immunosuppressive M2 phenotype. We found that high surface PS on cancer cells correlates with increased secretion of Hsp70 and is associated with higher MΦ differentiation activity in vitro and in vivo. Furthermore, blocking cancer cell-secreted Hsp70 with SapC-DOPG reverses the immune suppression and reduces tumor growth. CONCLUSIONS: These preclinical results reveal a novel immunotherapeutic approach to potentially improve the outcome of PDAC treatment in humans.

Zobrazit více v PubMed

Binnewies M., Roberts E.W., Kersten K., Chan V., Fearon D.F., Merad M., Coussens L.M., Gabrilovich D.I., Ostrand-Rosenberg S., Hedrick C.C., et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018;24:541–550. doi: 10.1038/s41591-018-0014-x. PubMed DOI PMC

Rabinovich G.A., Gabrilovich D., Sotomayor E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 2007;25:267–296. doi: 10.1146/annurev.immunol.25.022106.141609. PubMed DOI PMC

Bejarano L., Jordāo M.J.C., Joyce J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021;11:933–959. doi: 10.1158/2159-8290.Cd-20-1808. PubMed DOI

Yap T.A., Parkes E.E., Peng W., Moyers J.T., Curran M.A., Tawbi H.A. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021;11:1368–1397. doi: 10.1158/2159-8290.Cd-20-1209. PubMed DOI PMC

Mantovani A., Marchesi F., Malesci A., Laghi L., Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017;14:399–416. PubMed PMC

Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F., et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013;23:249–262. doi: 10.1016/j.ccr.2013.01.008. PubMed DOI

Yao L., Wang M., Niu Z., Liu Q., Gao X., Zhou L., Liao Q., Zhao Y. Interleukin-27 inhibits malignant behaviors of pancreatic cancer cells by targeting M2 polarized tumor associated macrophages. Cytokine. 2017;89:194–200. doi: 10.1016/j.cyto.2015.12.003. PubMed DOI

Candido J.B., Morton J.P., Bailey P., Campbell A.D., Karim S.A., Jamieson T., Lapienyte L., Gopinathan A., Clark W., McGhee E.J., et al. CSF1R(+) Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. Cell Rep. 2018;23:1448–1460. doi: 10.1016/j.celrep.2018.03.131. PubMed DOI PMC

Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022;72:7–33. doi: 10.3322/caac.21708. PubMed DOI

Capurso G., Sette C. Drug resistance in pancreatic cancer: New player caught in act. EBioMedicine. 2019;40:39–40. doi: 10.1016/j.ebiom.2019.02.008. PubMed DOI PMC

Vallabhapurapu S.D., Blanco V.M., Sulaiman M.K., Vallabhapurapu S.L., Chu Z., Franco R.S., Qi X. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget. 2015;6:34375–34388. doi: 10.18632/oncotarget.6045. PubMed DOI PMC

Birge R.B., Boeltz S., Kumar S., Carlson J., Wanderley J., Calianese D., Barcinski M., Brekken R.A., Huang X., Hutchins J.T., et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23:962–978. doi: 10.1038/cdd.2016.11. PubMed DOI PMC

Riedl S., Rinner B., Asslaber M., Schaider H., Walzer S., Novak A., Lohner K., Zweytick D. In search of a novel target—Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim. Biophys. Acta (BBA) Biomembr. 2011;1808:2638–2645. doi: 10.1016/j.bbamem.2011.07.026. PubMed DOI PMC

N’Guessan K.F., Davis H.W., Chu Z., Vallabhapurapu S.D., Lewis C.S., Franco R.S., Olowokure O., Ahmad S.A., Yeh J.J., Bogdanov V.Y., et al. Enhanced Efficacy of Combination of Gemcitabine and Phosphatidylserine-Targeted Nanovesicles against Pancreatic Cancer. Mol. Ther. J. Am. Soc. Gene Ther. 2020;28:1876–1886. doi: 10.1016/j.ymthe.2020.05.013. PubMed DOI PMC

Phinney N.Z., Huang X., Toombs J.E., Brekken R.A. Development of betabodies: The next generation of phosphatidylserine targeting agents. J. Biol. Chem. 2024;300:107681. doi: 10.1016/j.jbc.2024.107681. PubMed DOI PMC

Hsiehchen D., Beg M.S., Kainthla R., Lohrey J., Kazmi S.M., Khosama L., Maxwell M.C., Kline H., Katz C., Hassan A., et al. The phosphatidylserine targeting antibody bavituximab plus pembrolizumab in unresectable hepatocellular carcinoma: A phase 2 trial. Nat. Commun. 2024;15:2178. doi: 10.1038/s41467-024-46542-y. PubMed DOI PMC

Qi X., Leonova T., Grabowski G.A. Functional human saposins expressed in Escherichia coli. Evidence for binding and activation properties of saposins C with acid beta-glucosidase. J. Biol. Chem. 1994;269:16746–16753. doi: 10.1016/S0021-9258(19)89454-1. PubMed DOI

Qi X., Chu Z., Mahller Y.Y., Stringer K.F., Witte D.P., Cripe T.P. Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein. Clin. Cancer Res. 2009;15:5840–5851. doi: 10.1158/1078-0432.CCR-08-3285. PubMed DOI

Chu Z., Abu-Baker S., Palascak M.B., Ahmad S.A., Franco R.S., Qi X. Targeting and cytotoxicity of SapC-DOPS nanovesicles in pancreatic cancer. PLoS ONE. 2013;8:e75507. doi: 10.1371/journal.pone.0075507. PubMed DOI PMC

Sulaiman M.K., Chu Z., Blanco V.M., Vallabhapurapu S.D., Franco R.S., Qi X. SapC-DOPS nanovesicles induce Smac- and Bax-dependent apoptosis through mitochondrial activation in neuroblastomas. Mol. Cancer. 2015;14:78. doi: 10.1186/s12943-015-0336-y. PubMed DOI PMC

Ellis J. Proteins as molecular chaperones. Nature. 1987;328:378–379. doi: 10.1038/328378a0. PubMed DOI

Rosenzweig R., Nillegoda N.B., Mayer M.P., Bukau B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019;20:665–680. doi: 10.1038/s41580-019-0133-3. PubMed DOI

Mayer M.P., Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005;62:670–684. doi: 10.1007/s00018-004-4464-6. PubMed DOI PMC

Albakova Z., Armeev G.A., Kanevskiy L.M., Kovalenko E.I., Sapozhnikov A.M. HSP70 Multi-Functionality in Cancer. Cells. 2020;9:587. doi: 10.3390/cells9030587. PubMed DOI PMC

Sherman M.Y., Gabai V.L. Hsp70 in cancer: Back to the future. Oncogene. 2015;34:4153–4161. doi: 10.1038/onc.2014.349. PubMed DOI PMC

Mambula S.S., Calderwood S.K. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J. Immunol. 2006;177:7849–7857. doi: 10.4049/jimmunol.177.11.7849. PubMed DOI

Blott E.J., Griffiths G.M. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 2002;3:122–131. doi: 10.1038/nrm732. PubMed DOI

Broquet A.H., Thomas G., Masliah J., Trugnan G., Bachelet M. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J. Biol. Chem. 2003;278:21601–21606. doi: 10.1074/jbc.M302326200. PubMed DOI

Nitika, Truman A.W. Cracking the Chaperone Code: Cellular Roles for Hsp70 Phosphorylation. Trends Biochem. Sci. 2017;42:932–935. PubMed PMC

Zemanovic S., Ivanov M.V., Ivanova L.V., Bhatnagar A., Michalkiewicz T., Teng R.J., Kumar S., Rathore R., Pritchard K.A., Jr., Konduri G.G., et al. Dynamic Phosphorylation of the C Terminus of Hsp70 Regulates the Mitochondrial Import of SOD2 and Redox Balance. Cell Rep. 2018;25:2605–2616. doi: 10.1016/j.celrep.2018.11.015. PubMed DOI PMC

Rohde M., Daugaard M., Jensen M.H., Helin K., Nylandsted J., Jaattela M. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev. 2005;19:570–582. doi: 10.1101/gad.305405. PubMed DOI PMC

Juhasz K., Lipp A.M., Nimmervoll B., Sonnleitner A., Hesse J., Haselgruebler T., Balogi Z. The complex function of hsp70 in metastatic cancer. Cancers. 2013;6:42–66. doi: 10.3390/cancers6010042. PubMed DOI PMC

Kaynak A., Vallabhapurapu S.D., Davis H.W., Smith E.P., Muller P., Vojtesek B., Franco R.S., Shao W.-H., Qi X. TLR2-Bound Cancer-Secreted Hsp70 Induces MerTK-Mediated Immunosuppression and Tumorigenesis in Solid Tumors. Cancers. 2025;17:450. doi: 10.3390/cancers17030450. PubMed DOI PMC

Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC

Mambula S.S., Stevenson M.A., Ogawa K., Calderwood S.K. Mechanisms for Hsp70 secretion: Crossing membranes without a leader. Methods. 2007;43:168–175. doi: 10.1016/j.ymeth.2007.06.009. PubMed DOI PMC

Liang X., Luo M., Shao B., Yang J.Y., Tong A., Wang R.B., Liu Y.T., Jun R., Liu T., Yi T., et al. Phosphatidylserine released from apoptotic cells in tumor induces M2-like macrophage polarization through the PSR-STAT3-JMJD3 axis. Cancer Commun. 2022;42:205–222. doi: 10.1002/cac2.12272. PubMed DOI PMC

Schilling D., Gehrmann M., Steinem C., De Maio A., Pockley A.G., Abend M., Molls M., Multhoff G. Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2009;23:2467–2477. doi: 10.1096/fj.08-125229. PubMed DOI PMC

Utsugi T., Schroit A.J., Connor J., Bucana C.D., Fidler I.J. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 1991;51:3062–3066. PubMed

McCallister C., Kdeiss B., Nikolaidis N. Biochemical characterization of the interaction between HspA1A and phospholipids. Cell Stress Chaperones. 2016;21:41–53. doi: 10.1007/s12192-015-0636-6. PubMed DOI PMC

Dagogo-Jack I., Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018;15:81–94. doi: 10.1038/nrclinonc.2017.166. PubMed DOI

Jacquemin V., Antoine M., Dom G., Detours V., Maenhaut C., Dumont J.E. Dynamic Cancer Cell Heterogeneity: Diagnostic and Therapeutic Implications. Cancers. 2022;14:280. doi: 10.3390/cancers14020280. PubMed DOI PMC

Smulders L., Daniels A.J., Plescia C.B., Berger D., Stahelin R.V., Nikolaidis N. Characterization of the Relationship between the Chaperone and Lipid-Binding Functions of the 70-kDa Heat-Shock Protein, HspA1A. Int. J. Mol. Sci. 2020;21:5995. doi: 10.3390/ijms21175995. PubMed DOI PMC

Kuo J.H., Jan M.S., Jeng J., Chiu H.W. Induction of apoptosis in macrophages by air oxidation of dioleoylphosphatidylglycerol. J. Control. Release. 2005;108:442–452. doi: 10.1016/j.jconrel.2005.08.026. PubMed DOI

Menjivar R.E., Nwosu Z.C., Du W., Donahue K.L., Hong H.S., Espinoza C., Brown K., Velez-Delgado A., Yan W., Lima F., et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife. 2023;12:e80721. doi: 10.7554/eLife.80721. PubMed DOI PMC

Tempest R., Guarnerio S., Maani R., Cooper J., Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers. 2021;13:2788. doi: 10.3390/cancers13112788. PubMed DOI PMC

Wojton J., Meisen W.H., Jacob N.K., Thorne A.H., Hardcastle J., Denton N., Chu Z., Dmitrieva N., Marsh R., Van Meir E.G., et al. SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma. Oncotarget. 2014;5:9703–9709. doi: 10.18632/oncotarget.2232. PubMed DOI PMC

Zhao S., Chu Z., Blanco V.M., Nie Y., Hou Y., Qi X. SapC-DOPS nanovesicles as targeted therapy for lung cancer. Mol. Cancer Ther. 2015;14:491–498. doi: 10.1158/1535-7163.MCT-14-0661. PubMed DOI PMC

Abdelbaki M.S., DeWire Schottmiller M.D., Cripe T.P., Curry R.C., Cruze C.A., Her L., Demko S., Casey D., Setty B. An open-label multi-center phase 1 safety study of BXQ-350 in children and young adults with relapsed solid tumors, including recurrent malignant brain tumors. Heliyon. 2022;8:e12450. doi: 10.1016/j.heliyon.2022.e12450. PubMed DOI PMC

Rixe O., Villano J.L., Wesolowski R., Noonan A.M., Puduvalli V.K., Wise-Draper T.M., Curry R., 3rd, Yilmaz E., Cruze C., Ogretmen B., et al. A First-in-Human Phase I Study of BXQ-350, a First-in-Class Sphingolipid Metabolism Regulator, in Patients with Advanced/Recurrent Solid Tumors or High-Grade Gliomas. Clin. Cancer Res. 2024;30:5053–5060. doi: 10.1158/1078-0432.Ccr-24-1721. PubMed DOI

Patel R.A., Baron A.D., Boulmay B.C., Flora D.B., Gemmill J.A.L., Lee F.C., Sohal D., Williams G.R., Curry R.C., Gazda M., et al. BXQ-350: A phase 1b/2 placebo controlled, double blinded study on the efficacy and safety of BXQ-350 in combination with mFOLFOX7 and bevacizumab in newly diagnosed metastatic colorectal carcinoma (mCRC) J. Clin. Oncol. 2024;42:TPS224. doi: 10.1200/JCO.2024.42.3_suppl.TPS224. DOI

Shin K., Kim J., Park S.J., Lee M.A., Park J.M., Choi M.-G., Kang D., Song K.Y., Lee H.H., Seo H.S., et al. Prognostic value of soluble PD-L1 and exosomal PD-L1 in advanced gastric cancer patients receiving systemic chemotherapy. Sci. Rep. 2023;13:6952. doi: 10.1038/s41598-023-33128-9. PubMed DOI PMC

Okuma Y., Hosomi Y., Nakahara Y., Watanabe K., Sagawa Y., Homma S. High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer. Lung Cancer. 2017;104:1–6. doi: 10.1016/j.lungcan.2016.11.023. PubMed DOI

Paladini L., Fabris L., Bottai G., Raschioni C., Calin G.A., Santarpia L. Targeting microRNAs as key modulators of tumor immune response. J. Exp. Clin. Cancer Res. 2016;35:103. doi: 10.1186/s13046-016-0375-2. PubMed DOI PMC

Khayati S., Dehnavi S., Sadeghi M., Tavakol Afshari J., Esmaeili S.-A., Mohammadi M. The potential role of miRNA in regulating macrophage polarization. Heliyon. 2023;9:e21615. doi: 10.1016/j.heliyon.2023.e21615. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...