TLR2-Bound Cancer-Secreted Hsp70 Induces MerTK-Mediated Immunosuppression and Tumorigenesis in Solid Tumors

. 2025 Jan 28 ; 17 (3) : . [epub] 20250128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39941817

Grantová podpora
R01 CA158372 NCI NIH HHS - United States
R01 DK116789 NIDDK NIH HHS - United States
UL1 TR001425 NCATS NIH HHS - United States

Background: A hallmark of cancer is the presence of an immunosuppressive tumor microenvironment (TME). Immunosuppressive M2 macrophages (MΦs) in the TME facilitate escape from immune surveillance and promote tumor growth; therefore, TME-induced immunosuppression is a potent immunotherapeutic approach to treating cancer. Methods: Cancer cell-secreted proteins were detected by using liquid chromatography-mass spectrometry (LC-MS). Neutralizing antibodies (nAbs) were used to assess which proteins were involved in MΦs polarization and differentiation. The protein-protein interaction was characterized using co-immunoprecipitation and immunofluorescence assays. Cancer-secreted heat shock protein 70 (Hsp70) protein was quantified using an enzyme-linked immunosorbent assay (ELISA). MΦ polarization and tumor growth were assessed in vivo with subcutaneous LLC-GFP tumor models and toll-like receptor 2 (TLR2) knockout mice; in vitro assessments were conducted using TLR2 knockout and both LLC-GFP and LN227 lentiviral-mediated knockdown (KD) cells. Results: Cancer cells released a secreted form of Hsp70 that acted on MΦ TLR2 to upregulate Mer receptor tyrosine kinase (MerTK) and induce MΦ M2 polarization. Hsp70 nAbs led to a reduction in CD14 expression by 75% in THP-1 cells in response to Gli36 EMD-CM. In addition, neutralizing TLR2 nAbs resulted in a 30% and 50% reduction in CD14 expression on THP-1 cells in response to MiaPaCa-2 and Gli36 exosome/microparticle-depleted conditioned media (EMD-CMs), respectively. Hsp70, TLR2, and MerTK formed a protein complex. Tumor growth and intra-tumor M2 MΦs were significantly reduced upon cancer cell Hsp70 knockdown and in TLR2 knockout mice. Conclusions: Cancer-secreted Hsp70 interacts with TLR2, upregulates MerTK on MΦs, and induces immunosuppressive MΦ M2 polarization. This previously unreported action of secreted Hsp70 suggests that disrupting the Hsp70-TLR2-MerTK interaction could serve as a promising immunotherapeutic approach to mitigate TME immunosuppression in solid cancers.

Zobrazit více v PubMed

Binnewies M., Roberts E.W., Kersten K., Chan V., Fearon D.F., Merad M., Coussens L.M., Gabrilovich D.I., Ostrand-Rosenberg S., Hedrick C.C., et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018;24:541–550. doi: 10.1038/s41591-018-0014-x. PubMed DOI PMC

Rabinovich G.A., Gabrilovich D., Sotomayor E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 2007;25:267–296. doi: 10.1146/annurev.immunol.25.022106.141609. PubMed DOI PMC

Bejarano L., Jordāo M.J.C., Joyce J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021;11:933–959. doi: 10.1158/2159-8290.CD-20-1808. PubMed DOI

Yap T.A., Parkes E.E., Peng W., Moyers J.T., Curran M.A., Tawbi H.A. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021;11:1368–1397. doi: 10.1158/2159-8290.CD-20-1209. PubMed DOI PMC

Mantovani A., Marchesi F., Malesci A., Laghi L., Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017;14:399–416. doi: 10.1038/nrclinonc.2016.217. PubMed DOI PMC

Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F., et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013;23:249–262. doi: 10.1016/j.ccr.2013.01.008. PubMed DOI

Cassetta L., Fragkogianni S., Sims A.H., Swierczak A., Forrester L.M., Zhang H., Soong D.Y.H., Cotechini T., Anur P., Lin E.Y., et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588–602.e510. doi: 10.1016/j.ccell.2019.02.009. PubMed DOI PMC

Kumar V., Patel S., Tcyganov E., Gabrilovich D.I. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016;37:208–220. doi: 10.1016/j.it.2016.01.004. PubMed DOI PMC

Murray P.J. Immune regulation by monocytes. Semin. Immunol. 2018;35:12–18. doi: 10.1016/j.smim.2017.12.005. PubMed DOI

Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008;13:453–461. doi: 10.2741/2692. PubMed DOI

Locati M., Curtale G., Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol. 2020;15:123–147. doi: 10.1146/annurev-pathmechdis-012418-012718. PubMed DOI PMC

Murray P.J. Macrophage Polarization. Annu. Rev. Physiol. 2017;79:541–566. doi: 10.1146/annurev-physiol-022516-034339. PubMed DOI

Kim S., Takahashi H., Lin W.W., Descargues P., Grivennikov S., Kim Y., Luo J.L., Karin M. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457:102–106. doi: 10.1038/nature07623. PubMed DOI PMC

Ubil E., Caskey L., Holtzhausen A., Hunter D., Story C., Earp H.S. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J. Clin. Investig. 2018;128:2356–2369. doi: 10.1172/JCI97354. PubMed DOI PMC

Rosenzweig R., Nillegoda N.B., Mayer M.P., Bukau B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019;20:665–680. doi: 10.1038/s41580-019-0133-3. PubMed DOI

Calderwood S.K., Khaleque M.A., Sawyer D.B., Ciocca D.R. Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem. Sci. 2006;31:164–172. doi: 10.1016/j.tibs.2006.01.006. PubMed DOI

Rohde M., Daugaard M., Jensen M.H., Helin K., Nylandsted J., Jaattela M. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes. Dev. 2005;19:570–582. doi: 10.1101/gad.305405. PubMed DOI PMC

Juhasz K., Lipp A.M., Nimmervoll B., Sonnleitner A., Hesse J., Haselgruebler T., Balogi Z. The complex function of hsp70 in metastatic cancer. Cancers. 2013;6:42–66. doi: 10.3390/cancers6010042. PubMed DOI PMC

Nylandsted J., Wick W., Hirt U.A., Brand K., Rohde M., Leist M., Weller M., Jäättelä M. Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res. 2002;62:7139–7142. PubMed

Thorsteinsdottir J., Stangl S., Fu P., Guo K., Albrecht V., Eigenbrod S., Erl J., Gehrmann M., Tonn J.C., Multhoff G., et al. Overexpression of cytosolic, plasma membrane bound and extracellular heat shock protein 70 (Hsp70) in primary glioblastomas. J. Neuro-Oncol. 2017;135:443–452. doi: 10.1007/s11060-017-2600-z. PubMed DOI

Dutta S.K., Girotra M., Singla M., Dutta A., Otis Stephen F., Nair P.P., Merchant N.B. Serum HSP70: A novel biomarker for early detection of pancreatic cancer. Pancreas. 2012;41:530–534. doi: 10.1097/MPA.0b013e3182374ace. PubMed DOI PMC

Mambula S.S., Calderwood S.K. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J. Immunol. 2006;177:7849–7857. doi: 10.4049/jimmunol.177.11.7849. PubMed DOI

Blott E.J., Griffiths G.M. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 2002;3:122–131. doi: 10.1038/nrm732. PubMed DOI

Evdokimovskaya Y., Skarga Y., Vrublevskaya V., Morenkov O. Secretion of the heat shock proteins HSP70 and HSC70 by baby hamster kidney (BHK-21) cells. Cell Biol. Int. 2010;34:985–990. doi: 10.1042/CBI20100147. PubMed DOI

Broquet A.H., Thomas G., Masliah J., Trugnan G., Bachelet M. Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J. Biol. Chem. 2003;278:21601–21606. doi: 10.1074/jbc.M302326200. PubMed DOI

Johnson J.D., Fleshner M. Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J. Leukoc. Biol. 2006;79:425–434. doi: 10.1189/jlb.0905523. PubMed DOI

Multhoff G., Botzler C., Wiesnet M., Müller E., Meier T., Wilmanns W., Issels R.D. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer. 1995;61:272–279. doi: 10.1002/ijc.2910610222. PubMed DOI

Nitika, Truman A.W. Cracking the Chaperone Code: Cellular Roles for Hsp70 Phosphorylation. Trends Biochem. Sci. 2017;42:932–935. doi: 10.1016/j.tibs.2017.10.002. PubMed DOI PMC

Zemanovic S., Ivanov M.V., Ivanova L.V., Bhatnagar A., Michalkiewicz T., Teng R.J., Kumar S., Rathore R., Pritchard K.A., Jr., Konduri G.G., et al. Dynamic Phosphorylation of the C Terminus of Hsp70 Regulates the Mitochondrial Import of SOD2 and Redox Balance. Cell Rep. 2018;25:2605–2616.e7. doi: 10.1016/j.celrep.2018.11.015. PubMed DOI PMC

Muller P., Ruckova E., Halada P., Coates P.J., Hrstka R., Lane D.P., Vojtesek B. C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene. 2013;32:3101–3110. doi: 10.1038/onc.2012.314. PubMed DOI

Vabulas R.M., Wagner H., Schild H. Heat shock proteins as ligands of toll-like receptors. Curr. Top. Microbiol. Immunol. 2002;270:169–184. doi: 10.1007/978-3-642-59430-4_11. PubMed DOI

Asea A., Rehli M., Kabingu E., Boch J.A., Bare O., Auron P.E., Stevenson M.A., Calderwood S.K. Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 2002;277:15028–15034. doi: 10.1074/jbc.M200497200. PubMed DOI

Takeda K., Kaisho T., Akira S. Toll-like receptors. Annu. Rev. Immunol. 2003;21:335–376. doi: 10.1146/annurev.immunol.21.120601.141126. PubMed DOI

West A.P., Brodsky I.E., Rahner C., Woo D.K., Erdjument-Bromage H., Tempst P., Walsh M.C., Choi Y., Shadel G.S., Ghosh S. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472:476–480. doi: 10.1038/nature09973. PubMed DOI PMC

West A.P., Koblansky A.A., Ghosh S. Recognition and signaling by toll-like receptors. Annu. Rev. Cell Dev. Biol. 2006;22:409–437. doi: 10.1146/annurev.cellbio.21.122303.115827. PubMed DOI

Patidar A., Selvaraj S., Sarode A., Chauhan P., Chattopadhyay D., Saha B. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine. 2018;104:114–123. doi: 10.1016/j.cyto.2017.10.004. PubMed DOI

Rothlin C.V., Carrera-Silva E.A., Bosurgi L., Ghosh S. TAM receptor signaling in immune homeostasis. Annu. Rev. Immunol. 2015;33:355–391. doi: 10.1146/annurev-immunol-032414-112103. PubMed DOI PMC

Graham D.K., DeRyckere D., Davies K.D., Earp H.S. The TAM family: Phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer. 2014;14:769–785. doi: 10.1038/nrc3847. PubMed DOI

Schmid-Burgk J.L., Schmidt T., Gaidt M.M., Pelka K., Latz E., Ebert T.S., Hornung V. OutKnocker: A web tool for rapid and simple genotyping of designer nuclease edited cell lines. Genome Res. 2014;24:1719–1723. doi: 10.1101/gr.176701.114. PubMed DOI PMC

Dwivedi P., Muench D.E., Wagner M., Azam M., Grimes H.L., Greis K.D. Time resolved quantitative phospho-tyrosine analysis reveals Bruton’s Tyrosine kinase mediated signaling downstream of the mutated granulocyte-colony stimulating factor receptors. Leukemia. 2019;33:75–87. doi: 10.1038/s41375-018-0188-8. PubMed DOI PMC

Dehne N., Mora J., Namgaladze D., Weigert A., Brüne B. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr. Opin. Pharmacol. 2017;35:12–19. doi: 10.1016/j.coph.2017.04.007. PubMed DOI

Ferat-Osorio E., Sánchez-Anaya A., Gutiérrez-Mendoza M., Boscó-Gárate I., Wong-Baeza I., Pastelin-Palacios R., Pedraza-Alva G., Bonifaz L.C., Cortés-Reynosa P., Pérez-Salazar E., et al. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. J. Inflamm. 2014;11:19. doi: 10.1186/1476-9255-11-19. PubMed DOI PMC

Gao B., Tsan M.F. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 2003;278:174–179. doi: 10.1074/jbc.M208742200. PubMed DOI

Borges T.J., Wieten L., van Herwijnen M.J., Broere F., van der Zee R., Bonorino C., van Eden W. The anti-inflammatory mechanisms of Hsp70. Front. Immunol. 2012;3:95. doi: 10.3389/fimmu.2012.00095. PubMed DOI PMC

Wallin R.P., Lundqvist A., Moré S.H., von Bonin A., Kiessling R., Ljunggren H.G. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002;23:130–135. doi: 10.1016/S1471-4906(01)02168-8. PubMed DOI

Mao X., Xu J., Wang W., Liang C., Hua J., Liu J., Zhang B., Meng Q., Yu X., Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer. 2021;20:131. doi: 10.1186/s12943-021-01428-1. PubMed DOI PMC

Bruch-Oms M., Olivera-Salguero R., Mazzolini R., Del Valle-Pérez B., Mayo-González P., Beteta Á., Peña R., García de Herreros A. Analyzing the role of cancer-associated fibroblast activation on macrophage polarization. Mol. Oncol. 2023;17:1492–1513. doi: 10.1002/1878-0261.13454. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Targeting Hsp70 Immunosuppressive Signaling Axis with Lipid Nanovesicles: A Novel Approach to Treat Pancreatic Cancer

. 2025 Apr 04 ; 17 (7) : . [epub] 20250404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...