Evolution of REP diversity: a comparative study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
23758774
PubMed Central
PMC3686654
DOI
10.1186/1471-2164-14-385
PII: 1471-2164-14-385
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- genetická variace genetika MeSH
- genom bakteriální genetika MeSH
- molekulární evoluce * MeSH
- obrácené repetice genetika MeSH
- Pseudomonas enzymologie genetika MeSH
- transposasy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- transposasy MeSH
BACKGROUND: Repetitive extragenic palindromic elements (REPs) constitute a group of bacterial genomic repeats known for their high abundance and several roles in host cells´ physiology. We analyzed the phylogenetic distribution of particular REP classes in genomic sequences of sixty-three bacterial strains belonging to the Pseudomonas fluorescens species complex and ten strains of Stenotrophomonas sp., in order to assess intraspecific REP diversity and to gain insight into long-term REP evolution. RESULTS: Based on proximity to RAYT (REP-associated tyrosine transposase) genes, twenty-two and thirteen unique REP classes were determined in fluorescent pseudomonads and stenotrophomonads, respectively. In stenotrophomonads, REP elements were typically found in tens or a few hundred copies per genome. REPs of fluorescent pseudomonads were generally more numerous, occurring in hundreds or even over a thousand perfect copies of particular REP class per genome. REP sequences showed highly heterogeneous distribution. The abundances of REP classes roughly followed host strains´ phylogeny, differing markedly among individual clades. High abundances of particular REP classes appeared to depend on the presence of the cognate RAYT gene, and deviations from this state could be attributed to recent or ancient mutations of rayt-flanking REPs, or RAYT loss. RAYTs of both studied bacterial groups are monophyletic, and their cognate REPs show species-specific characteristics, suggesting shared evolutionary history of REPs, RAYTs and their hosts. CONCLUSIONS: The results of our large-scale analysis show that REP elements constitute intriguingly dynamic components of genomes of fluorescent pseudomonads and stenotrophomonads, and indicate that REP diversification and proliferation are ongoing processes. High numbers of REPs have apparently been retained during the entire evolutionary time since the establishment of these two bacterial lineages, probably because of their beneficial effect on host long-term fitness. REP elements in these bacteria represent a suitable platform to study the interplay between repeated elements, their mobilizers and host bacterial cells.
Zobrazit více v PubMed
Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 2008;36(21):6688–6719. doi: 10.1093/nar/gkn668. PubMed DOI PMC
Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev. 1998;62(3):725–774. PubMed PMC
Redfield RJ, Findlay WA, Bosse J, Kroll JS, Cameron AD, Nash JH. Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol Biol. 2006;6:82. doi: 10.1186/1471-2148-6-82. PubMed DOI PMC
El Karoui M, Biaudet V, Schbath S, Gruss A. Characteristics of Chi distribution on different bacterial genomes. Res Microbiol. 1999;150(9–10):579–587. PubMed
Barrangou R, Horvath P. CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol. 2012;3:143–162. doi: 10.1146/annurev-food-022811-101134. PubMed DOI
Delihas N. Small mobile sequences in bacteria display diverse structure/function motifs. Mol Microbiol. 2008;67(3):475–481. doi: 10.1111/j.1365-2958.2007.06068.x. PubMed DOI PMC
Delihas N. Impact of small repeat sequences on bacterial genome evolution. Genome Biol Evol. 2011;3:959–973. doi: 10.1093/gbe/evr077. PubMed DOI PMC
Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M. A novel intercistronic regulatory element of prokaryotic operons. Nature. 1982;298(5876):760–762. doi: 10.1038/298760a0. PubMed DOI
Gilson E, Bachellier S, Perrin S, Perrin D, Grimont PA, Grimont F, Hofnung M. Palindromic unit highly repetitive DNA sequences exhibit species specificity within Enterobacteriaceae. Res Microbiol. 1990;141(9):1103–1116. doi: 10.1016/0923-2508(90)90084-4. PubMed DOI
Aranda-Olmedo I, Tobes R, Manzanera M, Ramos JL, Marques S. Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. Nucleic Acids Res. 2002;30(8):1826–1833. doi: 10.1093/nar/30.8.1826. PubMed DOI PMC
Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA. et al.Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009;10(5):R51. doi: 10.1186/gb-2009-10-5-r51. PubMed DOI PMC
Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT, Elbourne LD, Stockwell VO, Hartney SL, Breakwell K. et al.Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 2012;8(7):e1002784. doi: 10.1371/journal.pgen.1002784. PubMed DOI PMC
Rocco F, De Gregorio E, Di Nocera PP. A giant family of short palindromic sequences in Stenotrophomonas maltophilia. FEMS Microbiol Lett. 2010;308(2):185–192. PubMed
Nunvar J, Huckova T, Licha I. Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes. BMC Genomics. 2010;11(1):44. doi: 10.1186/1471-2164-11-44. PubMed DOI PMC
Bertels F, Rainey PB. Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria. PLoS Genet. 2011;7(6):e1002132. doi: 10.1371/journal.pgen.1002132. PubMed DOI PMC
Gilson E, Saurin W, Perrin D, Bachellier S, Hofnung M. Palindromic units are part of a new bacterial interspersed mosaic element (BIME) Nucleic Acids Res. 1991;19(7):1375–1383. doi: 10.1093/nar/19.7.1375. PubMed DOI PMC
Oppenheim AB, Rudd KE, Mendelson I, Teff D. Integration host factor binds to a unique class of complex repetitive extragenic DNA sequences in Escherichia coli. Mol Microbiol. 1993;10(1):113–122. doi: 10.1111/j.1365-2958.1993.tb00908.x. PubMed DOI
Espeli O, Boccard F. In vivo cleavage of Escherichia coli BIME-2 repeats by DNA gyrase: genetic characterization of the target and identification of the cut site. Mol Microbiol. 1997;26(4):767–777. doi: 10.1046/j.1365-2958.1997.6121983.x. PubMed DOI
Gilson E, Perrin D, Hofnung M. DNA polymerase I and a protein complex bind specifically to E. coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization. Nucleic Acids Res. 1990;18(13):3941–3952. doi: 10.1093/nar/18.13.3941. PubMed DOI PMC
Espeli O, Moulin L, Boccard F. Transcription attenuation associated with bacterial repetitive extragenic BIME elements. J Mol Biol. 2001;314(3):375–386. doi: 10.1006/jmbi.2001.5150. PubMed DOI
Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F. Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell. 2008;132(2):208–220. doi: 10.1016/j.cell.2007.12.029. PubMed DOI PMC
He S, Guynet C, Siguier P, Hickman AB, Dyda F, Chandler M, Ton-Hoang B. IS200/IS605 family single-strand transposition: mechanism of IS608 strand transfer. Nucleic Acids Res. 2013;41(5):13–3302. PubMed PMC
Ton-Hoang B, Siguier P, Quentin Y, Onillon S, Marty B, Fichant G, Chandler M. Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences. Nucleic Acids Res. 2012;40(8):3596–3609. doi: 10.1093/nar/gkr1198. PubMed DOI PMC
Messing SA, Ton-Hoang B, Hickman AB, McCubbin AJ, Peaslee GF, Ghirlando R, Chandler M, Dyda F. The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. Nucleic Acids Res. 2012;40(19):9964–9979. doi: 10.1093/nar/gks741. PubMed DOI PMC
Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol. 2009;7(7):514–525. doi: 10.1038/nrmicro2163. PubMed DOI
Mulet M, Lalucat J, Garcia-Valdes E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol. 2010;12(6):1513–1530. PubMed
Svensson-Stadler LA, Mihaylova SA, Moore ER. Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. FEMS Microbiol Lett. 2012;327(1):15–24. doi: 10.1111/j.1574-6968.2011.02452.x. PubMed DOI
Demaneche S, Kay E, Gourbiere F, Simonet P. Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Appl Environ Microbiol. 2001;67(6):2617–2621. doi: 10.1128/AEM.67.6.2617-2621.2001. PubMed DOI PMC
Tobes R, Ramos JL. REP code: defining bacterial identity in extragenic space. Environ Microbiol. 2005;7(2):225–228. doi: 10.1111/j.1462-2920.2004.00704.x. PubMed DOI
NCBI Genome. http://www.ncbi.nlm.nih.gov/genome.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Rice P, Longden I, Bleasby A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000;16(6):276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI
pDRAW32 DNA analysis software. http://www.acaclone.com/
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739. doi: 10.1093/molbev/msr121. PubMed DOI PMC