A novel insight into the cardiotoxicity of antineoplastic drug doxorubicin

. 2013 Oct 31 ; 14 (11) : 21629-46. [epub] 20131031

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24185911

Doxorubicin is a commonly used antineoplastic agent in the treatment of many types of cancer. Little is known about the interactions of doxorubicin with cardiac biomolecules. Serious cardiotoxicity including dilated cardiomyopathy often resulting in a fatal congestive heart failure may occur as a consequence of chemotherapy with doxorubicin. The purpose of this study was to determine the effect of exposure to doxorubicin on the changes in major amino acids in tissue of cardiac muscle (proline, taurine, glutamic acid, arginine, aspartic acid, leucine, glycine, valine, alanine, isoleucine, threonine, lysine and serine). An in vitro interaction study was performed as a comparison of amino acid profiles in heart tissue before and after application of doxorubicin. We found that doxorubicin directly influences myocardial amino acid representation even at low concentrations. In addition, we performed an interaction study that resulted in the determination of breaking points for each of analyzed amino acids. Lysine, arginine, β-alanine, valine and serine were determined as the most sensitive amino acids. Additionally we compared amino acid profiles of myocardium before and after exposure to doxorubicin. The amount of amino acids after interaction with doxorubicin was significantly reduced (p = 0.05). This fact points at an ability of doxorubicin to induce changes in quantitative composition of amino acids in myocardium. Moreover, this confirms that the interactions between doxorubicin and amino acids may act as another factor most likely responsible for adverse effects of doxorubicin on myocardium.

Zobrazit více v PubMed

Das J., Ghosh J., Manna P., Sil P.C. Taurine protects rat testes against doxorubicin-induced oxidative stress as well as p53, Fas and caspase 12-mediated apoptosis. Amino Acids. 2012;42:1839–1855. PubMed

Holley A.K., Dhar S.K., Xu Y., St Clair D.K. Manganese superoxide dismutase: Beyond life and death. Amino Acids. 2012;42:139–158. PubMed PMC

Hossain S., Yamamoto H., Chowdhury E.H., Wu X., Hirose H., Haque A., Doki Y., Mori M., Akaike T. Fabrication and intracellular delivery of doxorubicin/carbonate apatite nanocomposites: Effect on growth retardation of established colon tumor. PLoS One. 2013;8:1–11. PubMed PMC

Farolfi A., Melegari E., Aquilina M., Scarpi E., Ibrahim T., Maltoni R., Sarti S., Cecconetto L., Pietri E., Ferrario C., et al. Trastuzumab-induced cardiotoxicity in early breast cancer patients: A retrospective study of possible risk and protective factors. Heart. 2013;99:634–639. PubMed

Li M.Q., Song W.T., Tang Z.H., Lv S.X., Lin L., Sun H., Li Q.S., Yang Y., Hong H., Chen X.S. Nanoscaled poly(l-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl. Mater. Interfaces. 2013;5:1781–1792. PubMed

Nissen M.J., Tsai M.L., Blaes A.H., Swenson K.K., Koering S. Effectiveness of treatment summaries in increasing breast and colorectal cancer survivors’ knowledge about their diagnosis and treatment. J. Cancer Surviv. 2013;7:211–218. PubMed

Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. PubMed

Yuan A., Wu J.H., Song C.C., Tang X.L., Qiao Q., Zhao L.L., Gong G.M., Hu Y.Q. A novel self-assembly albumin nanocarrier for reducing doxorubicin-mediated cardiotoxicity. J. Pharm. Sci. 2013;102:1626–1635. PubMed

Box V.G.S. The intercalation of DNA double helices with doxorubicin and nagalomycin. J. Mol. Gr. Model. 2007;26:14–19. PubMed

Swift L.P., Rephaeli A., Nudelman A., Phillips D.R., Cutts S.M. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res. 2006;66:4863–4871. PubMed

Schwartz R.G., Jain D., Storozynsky E. Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J. Nuclear Cardiol. 2013;20:443–464. PubMed

Kizek R., Adam V., Hrabeta J., Eckschlager T., Smutny S., Burda J.V., Frei E., Stiborova M. Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. Pharmacol. Ther. 2012;133:26–39. PubMed

Perego P., Corna E., de Cesare M., Gatti L., Polizzi D., Pratesi G., Supino R., Zunino F. Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines. Curr. Med. Chem. 2001;8:31–37. PubMed

Yang E.S., Huh Y.J., Park J.W. RNA interference targeting sensitive-to-apoptosis gene potentiates doxorubicin- and staurosporine-induced apoptosis of PC3 cells. Anticancer Res. 2013;33:847–855. PubMed

Wallace K.B. Doxorubicin-induced cardiac mitochondrionopathy. Pharm. Toxicol. 2003;93:105–115. PubMed

Sardao V.A., Oliveira P.J., Holy J., Oliveira C.R., Wallace K.B. Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother. Pharm. 2009;64:811–827. PubMed

Toldo S., Goehe R.W., Lotrionte M., Mezzaroma E., Sumner E.T., Biondi-Zoccai G.G.L., Seropian I.M., van Tassell B.W., Loperfido F., Palazzoni G., et al. Comparative cardiac toxicity of anthracyclines in vitro and in vivo in the mouse. PLoS One. 2013;8:1–8. PubMed PMC

Fong M.Y., Jin S.Y., Rane M., Singh R.K., Gupta R., Kakar S.S. Withaferin a synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One. 2012;7:1–16. PubMed PMC

Gharanei M., Hussain A., Janneh O., Maddock H.L. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore. Toxicol. Appl. Pharm. 2013;268:149–156. PubMed

Yang J.Q., Maity B., Huang J., Gao Z., Stewart A., Weiss R.M., Anderson M.E., Fisher R.A. G-protein inactivator RGS6 mediates myocardial cell apoptosis and cardiomyopathy caused by doxorubicin. Cancer Res. 2013;73:1662–1667. PubMed PMC

Yao Z.W., Hu W., Yin S., Huang Z., Zhu Q., Chen J.N., Zang Y.H., Dong L., Zhang J.F. 3,3′-Diindolymethane ameliorates adriamycin-induced cardiac fibrosis via activation of a BRCA1-dependent anti-oxidant pathway. Pharm. Res. 2013;70:139–146. PubMed

Zeng Q.B., Wen H.B., Wen Q., Chen X.H., Wang Y.G., Xuan W.L., Liang J.S., Wan S.H. Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials. 2013;34:4632–4642. PubMed

Eckman D.M., Stacey R.B., Rowe R., D’Agostino R., Kock N.D., Sane D.C., Torti F.M., Yeboah J., Workman S., Lane K.S., et al. Weekly doxorubicin increases coronary arteriolar wall and adventitial thickness. PLoS One. 2013;8:1–6. PubMed PMC

Pereira Neto G.B., Andrade J.N.B., Sousa M.G., Camacho A.A. Holter electrocardiography in dogs showing doxorubicin-induced dilated cardiomyopathy. Arq. Bras. Med. Vet. Zootec. 2006;58:1037–1042.

Lim C.C., Zuppinger C., Guo X.X., Kuster G.M., Helmes M., Eppenberger H.M., Suter T.M., Liao R.L., Sawyer D.B. Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J. Biol. Chem. 2004;279:8290–8299. PubMed

Liu T.C.K., Ismail S., Brennan O., Hastings C., Duffy G.P. Encapsulation of cardiac stem cells in superoxide dismutase-loaded alginate prevents doxorubicin-mediated toxicity. J. Tissue Eng. Regen. Med. 2013;7:302–311. PubMed

Masarik M., Kynclova H., Huska D., Hubalek J., Adam V., Babula P., Eckschlager T., Stiborova M., Kizek R. DNA-doxorubicin interactions revealed by electrochemistry. Int. J. Mol. Med. 2010;26:46.

Feridooni T., Hotchkiss A., Remley-Carr S., Saga Y., Pasumarthi K.B.S. Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes. PLoS One. 2011;6:1–12. PubMed PMC

Drake K.J., Sidorov V.Y., McGuinness O.P., Wasserman D.H., Wikswo J.P. Amino acids as metabolic substrates during cardiac ischemia. Exp. Biol. Med. 2012;237:1369–1378. PubMed PMC

Nejdl L., Sochor J., Zitka O., Cernei N., Ruttkay-Nedecky B., Kopel P., Babula P., Adam V., Hubalek J., Kizek R. Spectrometric and chromatographic study of reactive oxidants hypochlorous and hypobromous acids and their interactions with taurine. Chromatographia. 2013;76:363–373.

Huang Y., Zhou M.Y., Sun H.P., Wang Y.B. Branched-chain amino acid metabolism in heart disease: An epiphenomenon or a real culprit? Cardiovasc. Res. 2011;90:220–223. PubMed PMC

Weitzel L.B., Ambardekar A.V., Brieke A., Cleveland J.C., Serkova N.J., Wischmeyer P.E., Lowes B.D. Left ventricular assist device effects on metabolic substrates in the failing heart. PLoS One. 2013;8:1–6. PubMed PMC

Tazina E.V., Ignatieva E.V., Polozkova A.P., Oborotova N.A. Qualitative and quantitative analysis of thermosensitive liposomes loaded with doxorubicin. Pharm. Chem. J. 2012;46:54–59.

Albright C.F., Graciani N., Han W., Yue E., Stein R., Lai Z.H., Diamond M., Dowling R., Grimminger L., Zhang S.Y., et al. Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth doxorubicin with less toxicity. Mol. Cancer Ther. 2005;4:751–760. PubMed

Manocha B., Margaritis A. Controlled release of doxorubicin from doxorubicin/γ-polyglutamic acid ionic complex. J. Nanomater. 2010;2010:1–9.

Taetrneyer H., Harinstein M.E., Gheorghiade M. More than bricks and mortar: Comments on protein and amino acid metabolism in the heart. Am. J. Cardiol. 2008;101:3E–7E. PubMed

Proud C.G. Regulation of mammalian translation factors by nutrients. Eur. J. Biochem. 2002;269:5338–5349. PubMed

Zhang D.H., Contu R., Latronico M.V.G., Zhang J.A.L., Rizzi R., Catalucci D., Miyamoto S., Huang K., Ceci M., Gu Y.S., et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Investig. 2010;120:2805–2816. PubMed PMC

Katta A., Kundla S., Kakarla S.K., Wu M.Z., Fannin J., Paturi S., Liu H., Addagarla H.S., Blough E.R. Impaired overload-induced hypertrophy is associated with diminished mTOR signaling in insulin-resistant skeletal muscle of the obese Zucker rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;299:R1666–R1675. PubMed PMC

Wullschleger S., Loewith R., Hall M.N. TOR signaling in growth and metabolism. Cell. 2006;124:471–484. PubMed

Porstmann T., Santos C.R., Griffiths B., Cully M., Wu M., Leevers S., Griffiths J.R., Chung Y.L., Schulze A. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008;8:224–236. PubMed PMC

Zima T., Tesar V., Mantle D., Koll M., Patel V., Richardson P.J., Preedy V.R. Acute doxorubicin (adriamycin) dosage does not reduce cardiac protein synthesis in vivo, but decreases diaminopeptidase I and proline endopeptidase activities. Exp. Mol. Pathol. 2001;70:154–161. PubMed

Takemura G., Fujiwara H. Doxorubicin-induccd cardiomyopathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 2007;49:330–352. PubMed

Gianni L., Herman E.H., Lipshultz S.E., Minotti G., Sarvazyan N., Sawyer D.B. Anthracycline cardiotoxicity: From bench to bedside. J. Clin. Oncol. 2008;26:3777–3784. PubMed PMC

Yellon D.M., Hausenloy D.J. Mechanisms of disease: Myocardial reperfusion injury. N. Engl. J. Med. 2007;357:1121–1135. PubMed

Halestrap A.P. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol. 2009;46:821–831. PubMed

Halestrap A.P., Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. Biochim. Biophys. Acta. 2009;1787:1402–1415. PubMed

Gava F.N., Zacche E., Ortiz E.M.G., Champion T., Bandarra M.B., Vasconcelos R.O., Barbosa J.C., Camacho A.A. Doxorubicin induced dilated cardiomyopathy in a rabbit model: An update. Res. Vet. Sci. 2013;94:115–121. PubMed

She P.X., Olson K.C., Kadota Y., Inukai A., Shimomura Y., Hoppel C.L., Adams S.H., Kawamata Y., Matsumoto H., Sakai R., et al. Leucine and protein metabolism in obese zucker rats. PLoS One. 2013;8:1–19. PubMed PMC

Wilkinson D.J., Hossain T., Hill D.S., Phillips B.E., Crossland H., Williams J., Loughna P., Churchward-Venne T.A., Breen L., Phillips S.M., et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013;591:2911–2923. PubMed PMC

Yoo H.S., Park T.G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Control. Release. 2004;100:247–256. PubMed

Ryppa C., Mann-Steinberg H., Fichtner I., Weber H., Satchi-Fainaro R., Biniossek M.L., Kratz F. In vitro and in vivo evaluation of doxorubicin conjugates with the divalent peptide E-[c(RGDfK)2] that targets integrin αvβ3. Bioconjug. Chem. 2008;19:1414–1422. PubMed

King H.D., Dubowchik G.M., Mastalerz H., Willner D., Hofstead S.J., Firestone R.A., Lasch S.J., Trail P.A. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: Inhibition of aggregation by methoxytriethyleneglycol chains. J. Med. Chem. 2002;45:4336–4343. PubMed

Agudelo D., Bourassa P., Bruneau J., Berube G., Asselin E., Tajmir-Riahi H.A. Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins. PLoS One. 2012;7:1–13. PubMed PMC

Long G.L., Winefordner J.D. Limit of detection. Anal. Chem. 1983;55:A712–A724.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...