The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
14329
Cancer Research UK - United Kingdom
C313/A14329
Cancer Research UK - United Kingdom
PubMed
26919089
PubMed Central
PMC4855618
DOI
10.1002/em.22001
Knihovny.cz E-zdroje
- Klíčová slova
- benzo[a]pyrene, cytochrome P450, human liver, metabolism,
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren metabolismus farmakokinetika MeSH
- jaterní mikrozomy metabolismus MeSH
- játra enzymologie metabolismus MeSH
- králíci MeSH
- lidé MeSH
- metabolická inaktivace MeSH
- oxidace-redukce MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- benzo(a)pyrene-DNA adduct MeSH Prohlížeč
- benzopyren MeSH
- systém (enzymů) cytochromů P-450 MeSH
Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5 , to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP-7,8-dihydrodiol and BaP-9-ol, which are intermediates in BaP-derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP-3-ol, a metabolite that is a 'detoxified' product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP-7,8-dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP-9-ol. BaP-3-ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Division of Radiopharmaceutical Chemistry German Cancer Research Center Heidelberg Germany
Zobrazit více v PubMed
Arlt VM, Stiborova M, Henderson CJ, Thiemann M, Frei E, Aimova D, Singhs R, da Costa GG, Schmitz OJ, Farmer PB, et al. 2008. Metabolic activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo: experiments with hepatic cytochrome P450 reductase null mice. Carcinogenesis 29:656–665. PubMed
Arlt VM, Krais AM, Godschalk RW, Riffo‐Vasquez Y, Mrizova I, Roufosse CA, Corbin C, Shi Q, Frei E, Stiborova M, et al. 2015. Pulmonary inflammation impacts on CYP1A1‐mediated respiratory tract DNA damage induced by the carcinogenic air pollutant benzo[a]pyrene. Toxicol Sci 146:213–225. PubMed PMC
Baird WM, Hooven LA, Mahadevan B. 2005. Carcinogenic polycyclic aromatic hydrocarbon‐DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114. PubMed
Bauer E, Guo Z, Ueng YF, Bell LC, Zeldin D, Guengerich FP. 1995. Oxidation of benzo[a]pyrene by recombinant human cytochrome P450 enzymes. Chem Res Toxicol 8:136–142. PubMed
Edwards RJ, Adams DA, Watts PS, Davies DS, Boobis AR. 1998. Development of a comprehensive panel of antibodies against the major xenobiotic metabolising forms of cytochrome P450 in humans. Biochem Pharmacol 56:377–387. PubMed
Endo K, Uno S, Seki T, Ariga T, Kusumi Y, Mitsumata M, Yamada S, Makishima M. 2008. Inhibition of aryl hydrocarbon receptor transactivation and DNA adduct formation by CYP1 isoform‐selective metabolic deactivation of benzo[a]pyrene. Toxicol Appl Pharmacol 230:135–143. PubMed
Estrada DF, Skinner AL, Laurence JS, Scott EE. 2014. Human cytochrome P450 17A1 conformational celection. J Biol Chem 289:14310–14320. PubMed PMC
Guengerich FP. 2005. Reduction of cytochrome b 5 by NADPH‐cytochrome P450 reductase. Arch Biochem Biophys 440:204–211. PubMed
Henderson CJ, McLaughlin LA, Wolf CR. 2013. Evidence that cytochrome b 5 and cytochrome b 5 reductase can act as sole electron donors to the hepatic cytochrome P450 system. Mol Pharmacol 83:1209–1217. PubMed
Huang MT, Wood AW, Chang RL, Yagi H, Sayer JM, Jerina DM, Conney AH. 1986. Inhibitory effect of 3‐hydroxybenzo(a)pyrene on the mutagenicity and tumorigenicity of (+/−)‐7 beta, 8 alpha‐dihydroxy‐9 alpha, 10 alpha‐epoxy‐7,8,9,10‐tetrahydrobenzo(a)pyrene. Cancer Res 46:558–566. PubMed
Iarc 2010. International Agency for Research on Cancer. Some non‐heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1–853. PubMed PMC
Indra R, Moserova M, Kroftova N, Sulc M, Martinkova M, Adam V, Eckschlager T, Kizek R, Arlt VM, Stiborova M. 2014. Modulation of human cytochrome P450 1A1‐mediated oxidation of benzo[a]pyrene by NADPH:cytochrome P450 oxidoreductase and cytochrome b5 . Neuro Endocrinol Lett 35:105–113. PubMed
Jiang H, Gelhaus SL, Mangal D, Harvey RG, Blair IA, Penning TM. 2007. Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography–mass spectrometry. Chem Res Toxicol 20:1331–1341. PubMed PMC
Kim JH, Stansbury KH, Walker NJ, Trush MA, Strickland PT, Sutter TR. 1998. Metabolism of benzo[a]pyrene and benzo[a]pyrene‐7,8‐diol by human cytochrome P450 1B1. Carcinogenesis 19:1847–1853. PubMed
Kucab JE, van Steeg H, Luijten M, Schmeiser HH, White PA, Phillips DH, Arlt VM. 2015. TP53 mutations induced by BPDE in Xpa‐WT and Xpa‐Null human TP53 knock‐in (Hupki) mouse embryo fibroblasts. Mutat Res 773:48–62. PubMed PMC
Kotrbova V, Mrazova B, Moserova M, Martinek V, Hodek P, Hudecek J, Frei E, Stiborova M. 2011. Cytochrome b5 shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy. Biochem Pharmacol 82:669–680. PubMed
McLaughin LA, Ronseaux S, Finn RD, Henderson C and, Wolf CR. 2010. Deletion of microsomal cytochrome b 5 profoundly affects hepatic and extrahepatic drug metabolism. Mol Pharmacol 75:269–278. PubMed
Porter TD. 2002. The roles of cytochrome b 5 in cytochrome P450 reactions. J Biochem Mol Toxicol 16:311–316. PubMed
Rendic S, Di Carlo FJ. 1997. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29:413–580. PubMed
Schenkman JB, Jansson I. 2003. The many roles of cytochrome b5 . Pharmacol Ther 97:139–152. PubMed
Shi Q, Haenen GR, Maas L, Arlt VM, Spina D, Vasquez YR, Moonen E, Veith C, Van Schooten FJ, Godschalk RW. Inflammation‐associated extracellular β‐glucuronidase alters cellular responses to the chemical carcinogen benzo[a]pyrene. Arch Toxicol (in press). doi: 10.1007/s00204-015-1593-7. PubMed DOI PMC
Stiborova M, Martinek V, Rydlova H, Hodek P, Frei E. 2002. Sudan I is a potential carcinogen for humans: Evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res 62:5678–5684. PubMed
Stiborova M, Martinek V, Rydlova H, Koblas T, Hodek P. 2005. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1‐phenylazo‐2‐naphthol (Sudan I) in human livers. Cancer Lett 220:145–154. PubMed
Stiborova M, Martinek V, Schmeiser HH, Frei E. 2006. Modulation of CYP1A1‐mediated oxidation of carcinogenic azo dye Sudan I and its binding to DNA by cytochrome b5 . Neurol Endocrinol Lett 27(Suppl2):35–39. PubMed
Stiborova M, Moserova M, Cerna V, Indra R, Dracinsky M, Šulc M, Henderson CJ, Wolf CR, Schmeiser HH, Phillips DH, Frei E, Arlt VM. 2014. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene–DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions. Toxicology 318:1–12. PubMed