• This record comes from PubMed

Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin

. 2009 Mar 18 ; 96 (6) : 2268-77.

Language English Country United States Media print

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
R01 GM029498 NIGMS NIH HHS - United States
R37 GM029498 NIGMS NIH HHS - United States
GM29498 NIGMS NIH HHS - United States

Links

PubMed 19289053
PubMed Central PMC2717270
DOI 10.1016/j.bpj.2009.01.004
PII: S0006-3495(09)00380-4
Knihovny.cz E-resources

Xanthorhodopsin of the extremely halophilic bacterium Salinibacter ruber represents a novel antenna system. It consists of a carbonyl carotenoid, salinixanthin, bound to a retinal protein that serves as a light-driven transmembrane proton pump similar to bacteriorhodopsin of archaea. Here we apply the femtosecond transient absorption technique to reveal the excited-state dynamics of salinixanthin both in solution and in xanthorhodopsin. The results not only disclose extremely fast energy transfer rates and pathways, they also reveal effects of the binding site on the excited-state properties of the carotenoid. We compared the excited-state dynamics of salinixanthin in xanthorhodopsin and in NaBH(4)-treated xanthorhodopsin. The NaBH(4) treatment prevents energy transfer without perturbing the carotenoid binding site, and allows observation of changes in salinixanthin excited-state dynamics related to specific binding. The S(1) lifetimes of salinixanthin in untreated and NaBH(4)-treated xanthorhodopsin were identical (3 ps), confirming the absence of the S(1)-mediated energy transfer. The kinetics of salinixanthin S(2) decay probed in the near-infrared region demonstrated a change of the S(2) lifetime from 66 fs in untreated xanthorhodopsin to 110 fs in the NaBH(4)-treated protein. This corresponds to a salinixanthin-retinal energy transfer time of 165 fs and an efficiency of 40%. In addition, binding of salinixanthin to xanthorhodopsin increases the population of the S(*) state that decays in 6 ps predominantly to the ground state, but a small fraction (<10%) of the S(*) state generates a triplet state.

See more in PubMed

Green R.B., Parson W.W., editors. Light-Harvesting Antennas in Photosynthesis. Kluwer, Dordrecht; The Netherlands: 2003.

Polívka T., Sundström V. Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem. Rev. 2004;104:2021–2071. PubMed

Ritz T., Damjanovic A., Schulten K., Zhang J.P., Koyama Y. Efficient light harvesting through carotenoids. Photosynth. Res. 2000;66:125–144. PubMed

van Amerongen H., van Grondelle R. Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J. Phys. Chem. B. 2001;105:604–617.

Polívka T., Hiller R.G., Frank H.A. Spectroscopy of the peridinin – chlorophyll-a protein: insight into light-harvesting strategy of marine algae. Arch. Biochem. Biophys. 2007;458:111–120. PubMed

Mathies R.A., Lin S.W., Ames J.B., Pollard W.T. From femtoseconds to biology: mechanism of bacteriorhodopsin's light-driven proton pump. Annu. Rev. Biophys. Biophys. Chem. 1991;20:491–518. PubMed

Balashov S.P. Protonation reactions and their coupling in bacteriorhodopsin. Biochim. Biophys. Acta. 2000;1460:75–94. PubMed

Lanyi J., Schobert B. Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle. Biochemistry. 2004;43:3–8. PubMed

Subramaniam S., Hirai T., Henderson R. From structure to mechanism: electron crystallographic studies of bacteriorhodopsin. Philos. Trans. R. Soc. Lond. A. 2002;360:859–874. PubMed

Kobayashi T., Saito T., Ohtani H. Real-time spectroscopy of transition states of bacteriorhodopsin during retinal isomerization. Nature. 2001;414:531–534. PubMed

Sharkov A.V., Pakulev A.V., Chekalin S.V., Matveetz Y.A. Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy. Biochim. Biophys. Acta. 1985;808:94–102.

Kahan A., Nahmias O., Friedman N., Sheves M., Ruhman S. Following photoinduced dynamics in bacteriorhodopsin with 7-fs impulsive vibrational spectroscopy. J. Am. Chem. Soc. 2007;129:537–546. PubMed

Herbst J., Heyne K., Diller R. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science. 2002;297:822–825. PubMed

Gai F., Hasson K.C., McDonald J.C., Anfinrud P.A. Chemical dynamics in proteins: the photoisomerization of retinal in bacteriorhodopsin. Science. 1998;279:1886–1891. PubMed

Kochendoerfer G.G., Mathies R.A. Ultrafast spectroscopy of rhodopsins—photochemistry at its best. Isr. J. Chem. 1995;35:211–226.

Fuhrman J.A., Schwalbach M.S., Stingl U. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 2008;6:488–494. PubMed

Balashov S.P., Imasheva E.S., Boichenko V.A., Antón J., Wang J.M. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science. 2005;309:2061–2064. PubMed PMC

Antón J., Oren A., Benlloch S., Rodríguez-Valera F., Amann R. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 2002;52:485–491. PubMed

Lutnaes B.F., Oren A., Liaaen-Jensen S. New C40-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J. Nat. Prod. 2002;65:1340–1343. PubMed

Balashov S.P., Imasheva E.S., Wang J.M., Lanyi J.K. Excitation energy transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys. J. 2008;95:2402–2414. PubMed PMC

Luecke H., Schobert B., Stagno J., Imasheva E.S., Wang J.M. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA. 2008;105:16561–16565. PubMed PMC

Imasheva E.S., Balashov S.P., Wang J.M., Smolensky E., Sheves M. Chromophore interaction in xanthorhodopsin—retinal dependence of salinixanthin binding. Photochem. Photobiol. 2008;84:977–984. PubMed PMC

Cong H., Niedzwiedzki D.M., Gibson G.N., LaFountain A.M., Kelsh R.M. Ultrafast time-resolved carotenoid-to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J. Phys. Chem. B. 2008;112:10689–10703. PubMed PMC

Koyama Y., Rondonuwu F.S., Fujii R., Watanabe Y. Light-harvesting function of carotenoids in photosynthesis: the roles of the newly found 1Bu− state. Biopolymers. 2004;74:2–18. PubMed

Marian C.M., Gilka N. Performance of the density functional theory/multireference configuration interaction method on electronic excitation of extended π-systems. J. Chem. Theory Comput. 2008;4:1501–1515. PubMed

Gradinaru C.C., Kennis J.T.M., Papagiannakis E., van Stokkum I.H.M., Cogdell R.J. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. USA. 2001;98:2364–2369. PubMed PMC

Frank H.A., Bautista J.A., Josue J., Pendon Z., Hiller R.G. Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J. Phys. Chem. B. 2000;104:4569–4577.

Zigmantas D., Hiller R.G., Sharples F.P., Frank H.A., Sundström V. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 2004;6:3009–3016.

Stalke S., Wild D.A., Lenzer T., Kopczynski M., Lohse P.W. Solvent-dependent ultrafast internal conversion dynamics of n′-apo-β-carotenoic-n′-acids (n=8, 10, 12) Phys. Chem. Chem. Phys. 2008;10:2180–2188. PubMed

Imasheva E.S., Balashov S.P., Wang J.M., Lanyi J.K. pH-dependent transitions in xanthorhodopsin. Photochem. Photobiol. 2006;82:1406–1413. PubMed PMC

van Stokkum I.H.M., Larsen D.S., van Grondelle R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta. 2004;1657:82–104. PubMed

Peters J., Peters R., Stoeckenius W. A photosensitive product of sodium borohydride reduction of bacteriorhodopsin. FEBS Lett. 1976;61:128–134. PubMed

Balashov S.P., Imasheva E.S., Lanyi J.K. Induced chirality of light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin. Biochemistry. 2006;45:10998–11004. PubMed PMC

de Weerd F.L., van Stokkum I.H.M., van Grondelle R. Subpicosecond dynamics in the excited state absorption of all-trans-β-carotene. Chem. Phys. Lett. 2002;354:38–43.

Niedzwiedzki D., Koscielecki J.F., Cong H., Sullivan J.O., Gibson G.N. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J. Phys. Chem. B. 2007;111:5984–5998. PubMed

Papagiannakis E., Kennis J.T.M., van Stokkum I.H.M., Cogdell R.J., van Grondelle R. An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Proc. Natl. Acad. Sci. USA. 2002;99:6017–6022. PubMed PMC

Papagiannakis E., van Stokkum I.H.M., Vengris M., Cogdell R.J., van Grondelle R. Excited-state dynamics of carotenoids in light-harvesting complexes. 1. Exploring the relationship between the S1 and S∗ states. J. Phys. Chem. B. 2006;110:5727–5736. PubMed

Billsten H.H., Zigmantas D., Sundström V., Polívka T. Dynamics of vibrational relaxation in the S1 state of carotenoids having 11 conjugated C=C bonds. Chem. Phys. Lett. 2002;355:465–470.

Papagiannakis E., van Stokkum I.H.M., van Grondelle R., Niederman R.A., Zigmantas D. A near-infrared transient absorption study of the excited-state dynamics of the carotenoid spirilloxanthin in solution and in the LH1 complex of Rhodospirillum rubrum. J. Phys. Chem. B. 2003;107:11216–11223.

Zhang J.P., Skibsted L.H., Fujii R., Koyama Y. Transient absorption from the 1Bu+ state of all-trans-β-carotene newly identified in the near-infrared region. Photochem. Photobiol. 2001;73:219–222. PubMed

McCamant D.W., Kukura P., Mathies R.A. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B. 2005;109:10449–10457. PubMed PMC

Polívka T., Herek J.L., Zigmantas D., Åkerlund H.E., Sundström V. Direct observation of the (forbidden) S1 state in carotenoids. Proc. Natl. Acad. Sci. USA. 1999;96:4914–4917. PubMed PMC

Polívka T., Zigmantas D., Frank H.A., Bautista J.A., Herek J.L. Near-infrared time-resolved study of the S1 state dynamics of the carotenoid spheroidene. J. Phys. Chem. B. 2001;105:1072–1080.

Kennis J.T.M., Larsen D.S., Ohta K., Facciotti M.T., Glaeser R.M. Ultrafast protein dynamics of bacteriorhodopsin probed by photon echo and transient absorption spectroscopy. J. Phys. Chem. B. 2002;106:6067–6080.

Lakowicz J.R. Springer; Singapore: 2006. Principles of Fluorescence Spectroscopy.

Polívka T., Kerfeld C.A., Pascher T., Sundström V. Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium. Arthrospira maxima. Biochemistry. 2005;44:3994–4003. PubMed

Wilson A., Punginelli C., Gall A., Bonetti C., Alexandre M. A photoactive carotenoid protein acting as light intensity sensor. Proc. Natl. Acad. Sci. USA. 2008;105:12075–12080. PubMed PMC

Polívka T., Zigmantas D., Herek J.L., He Z., Pascher T. The carotenoid S1 state in LH2 complexes from purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila: S1 energies, dynamics, and carotenoid radical formation. J. Phys. Chem. B. 2002;106:11016–11025.

Schlucker S., Szeghalmi A., Schmitt M., Popp J., Kiefer W. Density functional and vibrational spectroscopic analysis of β-carotene. J. Raman Spectrosc. 2003;34:413–419.

Kerfeld C.A., Sawaya M.R., Brahmandam V., Cascio D., Ho K.K. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure. 2003;11:55–65. PubMed

Boichenko V.A., Wang J.M., Antón J., Lanyi J.K., Balashov S.P. Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochim. Biophys. Acta. 2006;1757:1649–1656. PubMed PMC

Pullerits T., Hess S., Herek J.L., Sundström V. Temperature dependence of excitation transfer in LH2 of. Rhodobacter sphaeroides. J. Phys. Chem. B. 1997;101:10560–10567.

Krueger B.P., Scholes G.D., Fleming G.R. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B. 1998;102:5378–5386.

Tavan P., Schulten K. The low-lying electronic excitations in long polyenes—a PPP-MRD-CI study. J. Chem. Phys. 1986;85:6602–6609.

Ghosh D., Hachmann J., Yanai T., Chan G.K.L. Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene. J. Chem. Phys. 2008;128:144117. PubMed

Niedzwiedzki D.M., Sullivan J.O., Polívka T., Birge R.R., Frank H.A. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls. J. Phys. Chem. B. 2006;110:22872–22885. PubMed

Fujii R., Furuichi K., Zhang J.P., Nagae H., Hashimoto H. Cis-to-trans isomerization of spheroidene in the triplet state as detected by time-resolved absorption spectroscopy. J. Phys. Chem. A. 2002;106:2410–2421.

Wohlleben W., Buckup T., Herek J.L., Cogdell R.J., Motzkus M. Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis. Biophys. J. 2003;85:442–450. PubMed PMC

Birge R.R., Cooper T.M., Lawrence A.F., Masthay M.B., Zhang C.F. Revised assignment of energy storage in the primary photochemical event in bacteriorbodopsin. J. Am. Chem. Soc. 1991;113:4327–4328.

Birge R.R., Zhang C.F. Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag-like 1Bu+-like π, π∗ states. J. Chem. Phys. 1990;92:7179–7195.

Nielsen I.B., Lammich L., Andersen L.H. S1 and S2 excited states of gas-phase Schiff-base retinal chromophores. Phys. Rev. Lett. 2006;96:018304. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...