Low-temperature time-resolved spectroscopic study of the major light-harvesting complex of Amphidinium carterae
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- blízká infračervená spektroskopie * MeSH
- časové faktory MeSH
- chlorofyl a MeSH
- chlorofyl metabolismus MeSH
- Dinoflagellata metabolismus MeSH
- elektrony MeSH
- karotenoidy metabolismus MeSH
- kinetika MeSH
- nízká teplota * MeSH
- přenos energie MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- karotenoidy MeSH
- peridinin MeSH Prohlížeč
- světlosběrné proteinové komplexy MeSH
The major light-harvesting complex of Amphidinium (A.) carterae, chlorophyll-a-chlorophyll-c 2-peridinin-protein complex (acpPC), was studied using ultrafast pump-probe spectroscopy at low temperature (60 K). An efficient peridinin-chlorophyll-a energy transfer was observed. The stimulated emission signal monitored in the near-infrared spectral region was stronger when redder part of peridinin pool was excited, indicating that these peridinins have the S1/ICT (intramolecular charge-transfer) state with significant charge-transfer character. This may lead to enhanced energy transfer efficiency from "red" peridinins to chlorophyll-a. Contrary to the water-soluble antenna of A. carterae, peridinin-chlorophyll-a protein, the energy transfer rates in acpPC were slower under low-temperature conditions. This fact underscores the influence of the protein environment on the excited-state dynamics of pigments and/or the specificity of organization of the two pigment-protein complexes.
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Photosynth Res. 2014 May;120(1-2):125-39 PubMed
Biochim Biophys Acta. 2010 Sep;1797(9):1647-56 PubMed
J Phys Chem B. 2006 Jan 12;110(1):512-21 PubMed
J Phys Chem A. 2012 Dec 20;116(50):12330-8 PubMed
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20764-9 PubMed
Biochemistry. 2006 Jul 18;45(28):8516-26 PubMed
Biochemistry. 2006 Nov 28;45(47):14052-63 PubMed
Science. 2004 Jul 16;305(5682):354-60 PubMed
Biochim Biophys Acta. 2012 Jul;1817(7):983-9 PubMed
Biochim Biophys Acta. 2010 May;1797(5):543-9 PubMed
Biochemistry. 2003 Nov 11;42(44):13027-34 PubMed
Photosynth Res. 2005 Nov;86(1-2):241-50 PubMed
J Eukaryot Microbiol. 2003 Nov-Dec;50(6):439-48 PubMed
Biochim Biophys Acta. 2010 Oct;1797(10):1759-67 PubMed
Arch Biochem Biophys. 2007 Feb 15;458(2):111-20 PubMed
Biochim Biophys Acta. 2009 Oct;1787(10):1189-97 PubMed
Acc Chem Res. 2010 Aug 17;43(8):1125-34 PubMed
Photochem Photobiol. 1993 Jan;57(1):125-31 PubMed
Biophys J. 2013 Mar 19;104(6):1314-25 PubMed
Biochem Biophys Res Commun. 2012 Oct 26;427(3):637-41 PubMed
Phys Chem Chem Phys. 2011 Jun 14;13(22):10762-70 PubMed
ISME J. 2007 Aug;1(4):271-82 PubMed
Chem Phys. 2010 Jul 19;373(1-2):80-89 PubMed
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16760-5 PubMed
Science. 1998 Jul 10;281(5374):237-40 PubMed
PLoS One. 2012;7(10):e47456 PubMed
Science. 1996 Jun 21;272(5269):1788-91 PubMed
Plant Mol Biol. 1994 Feb;24(4):673-7 PubMed
J Phys Chem A. 2005 Apr 14;109(14):3120-7 PubMed
Photosynth Res. 2005 Nov;86(1-2):217-27 PubMed