Excited-state dynamics of monomeric and aggregated carotenoid 8'-apo-β-carotenal
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23176366
DOI
10.1021/jp310140k
Knihovny.cz E-zdroje
- MeSH
- absorpce MeSH
- karotenoidy chemie MeSH
- spektrální analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-apo-8'-carotenal MeSH Prohlížeč
- karotenoidy MeSH
Excited-state properties of monomeric and aggregated carbonyl carotenoid 8'-apo-β-carotenal were studied by means of femtosecond transient absorption spectroscopy. For monomers, the polarity-dependent behavior characteristic of carotenoids with conjugated carbonyl group was observed. In n-hexane the S(1) lifetime is 25 ps, but it is shortened to 8 ps in methanol. This shortening is accompanied by the appearance of new spectral bands in transient absorption spectrum. On the basis of analysis of the transient absorption spectra of monomeric 8'-apo-β-carotenal in n-hexane and methanol, we propose that the polarity-induced spectral bands are due to the S(1)(A(g)(-))-S(3)(A(g)(+)) transition, which is enhanced upon breaking the symmetry of the molecule. This symmetry breaking is caused by the conjugated carbonyl group; it is much stronger in polar solvents where the S(1) state gains significant charge-transfer character. Upon addition of water to methanol solution of 8'-apo-β-carotenal we observed formation of aggregates characterized by either blue-shifted (H-aggregate) or red-shifted (J-aggregate) absorption spectrum. Both aggregate types exhibit excited-state dynamics significantly different from those of monomeric 8'-apo-β-carotenal. The lifetime of the relaxed S(1) state is 20 and 40 ps for the H- and J-aggregates, respectively. In contrast to monomers, aggregation promotes formation of triplet state, most likely by homofission occurring between tightly packed molecules within the aggregate.
Citace poskytuje Crossref.org