Widespread diminishing anthropogenic effects on calcium in freshwaters

. 2019 Jul 18 ; 9 (1) : 10450. [epub] 20190718

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31320731
Odkazy

PubMed 31320731
PubMed Central PMC6639332
DOI 10.1038/s41598-019-46838-w
PII: 10.1038/s41598-019-46838-w
Knihovny.cz E-zdroje

Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations ≤ 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in >200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.

Biological Station Lake Neusiedl 7142 Illmitz Austria

Centre for Limnology Institute of Agricultural and Environmental Sciences Estonian University of Life Sciences 51117 Rannu Tartu County Estonia

CNR Water Research Institute L go Tonolli 50 1 28922 Verbania Pallanza Italy

Department of Aquatic Ecology and Environmental Biology Institute for Water and Wetland Research Radboud University 6525AJ Nijmegen The Netherlands

Department of Biological Sciences Rensselaer Polytechnic Institute Troy NY 12180 USA

Department of Biosciences Centre for Biogeochemistry in the Anthropocene University of Oslo Box 1066 Blindern 0316 Norway

Department of Ecology and Genetics Limnology Uppsala University Norbyvägen 18D 752 36 Uppsala Sweden

Department of Limnology and Biological Oceanography University of Vienna Althanstrasse 14 1090 Vienna Austria

Department of Sustainable Agro ecosystems and Bioresources Research and Innovation Centre Fondazione Edmund Mach Via E Mach 1 38010 San Michele all'Adige Italy

Dorset Environmental Science Centre Dorset ON P0A 1E0 Canada

Helmholtz Centre for Environmental Research Department of Lake Research and Department of Aquatic Ecosystem Analysis Magdeburg Germany

IISD Experimental Lakes Area Inc 111 Lombard Avenue Suite 325 Winnipeg R3B 0T5 Canada

INRA CARRTEL 75 bis avenue de Corzent 74203 Thonon les Bains cx France

Institute for Geology Center for Earth System Research and Sustainability University of Hamburg Bundesstraße 55 20146 Hamburg Germany

Institute of Agricultural and Environmental Sciences Estonian University of Life Sciences Kreutzwaldi 5 51014 Tartu Estonia

Institute of Biology University of Latvia Miera Str 3 Salaspils LV 2169 Latvia

Institute of Hydrobiology Biology Centre CAS Na Sádkách 7 370 05 České Budějovice Czech Republic

Irstea RiverLy 5 Rue de la Doua 69625 Villeurbanne cedex France

Kellogg Biological Station and Department of Integrative Biology Michigan State University Hickory Corners MI 49060 and Cary Institute of Ecosystem Studies Millbrook NY 12545 USA

National Institute of Water and Atmospheric Research Hamilton New Zealand

Norwegian Institute for Water Research Gaustadalléen 23 NO 0349 Oslo Norway

Surface Waters Research and Management Eawag Swiss Federal Institute of Aquatic Science and Technology Seestrasse 79 6047 Kastanienbaum Switzerland

U S Environmental Protection Agency Clean Air Markets Division Washington DC 20460 USA

U S Geological Survey New York Water Science Center Troy NY 12180 USA

Vermont Department of Environmental Services 1 National Life Drive Montpelier Vermont USA

Zobrazit více v PubMed

Moran, L. A., Horton, H. R., Scrimgeour, K. G. & Perry, M. D. Principles of Biochemistry. (Pearson, 2012).

Hessen DO, Andersen T, Tominaga K, Finstad AG. When soft waters becomes softer; drivers of critically low levels of Ca in Norwegian lakes. Limnology and Oceanography. 2017;62:289–298. doi: 10.1002/lno.10394. DOI

Sterner, R. W. & Elser, J. J. Ecological stoichiometry: The biology of elements from molecules to the biosphere. (Princeton University Press, 2002).

Jeziorski A, et al. The widespread threat of calcium decline in fresh waters. Science. 2008;322:1374–1377. doi: 10.1126/science.1164949. PubMed DOI

Cairns A, Yan N. A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environmental Reviews. 2009;17:67–79. doi: 10.1139/a09-005. DOI

Jeziorski A, et al. The jellification of north temperate lakes. Proceedings of the Royal Society B-Biological Sciences. 2015;282:9. doi: 10.1098/rspb.2014.2449. PubMed DOI PMC

Hessen DO, Faafeng BA, Andersen T. Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure. Canadian Journal of Fisheries and Aquatic Sciences. 1995;52:733–742. doi: 10.1139/f95-073. DOI

Waervagen SB, Rukke NA, Hessen DO. Calcium content of crustacean zooplankton and its potential role in species distribution. Freshwater Biology. 2002;47:1866–1878. doi: 10.1046/j.1365-2427.2002.00934.x. DOI

Jeziorski A, Smol JP. The ecological impacts of lakewater calcium decline on softwater boreal ecosystems. Environmental Reviews. 2017;25:245–253. doi: 10.1139/er-2016-0054. DOI

Azan SSE, Arnott SE. The impact of calcium decline on population growth rates of crustacean zooplankton in Canadian Shield lakes. Limnology and Oceanography. 2018;63:602–616. doi: 10.1002/lno.10653. DOI

Keller W, Dixit SS, Heneberry J. Calcium declines in northeastern Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences. 2001;58:2011–2020. doi: 10.1139/cjfas-58-10-2011. DOI

Moss B. Influence of environmental factors on distribution of freshwater algae - experimental study. 1. Introduction and influence of calcium concentration. Journal of Ecology. 1972;60:917–932. doi: 10.2307/2258575. DOI

Enge E, Hesthagen T, Auestad BH. Highly dilute water chemistry during late snowmelt period affects recruitment of brown trout (Salmo trutta) in River Sira, southwestern Norway. Limnologica. 2017;62:97–103. doi: 10.1016/j.limno.2016.11.009. DOI

Pabian SE, Brittingham MC. Soil calcium availability limits forest songbird productivity and density. Auk. 2011;128:441–447. doi: 10.1525/auk.2011.10283. DOI

Meybeck, M. Global occurrence of major elements in rivers. In Surface and groundwater, weathering, and soils Vol. 5 Treatise onGeochemistry (ed. Drever, J. I.) 207–223 (Elsevier, 2003).

Verpoorter C, Kutser T, Seekell DA, Tranvik LJ. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters. 2014;41:6396–6402. doi: 10.1002/2014gl060641. DOI

Meybeck M. Global chemical-weathering of surficial rocks estimated from river dissolved loads. American Journal of Science. 1987;287:401–428. doi: 10.2475/ajs.287.5.401. DOI

Suchet PA, Probst JL, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles. 2003;17:14. doi: 10.1029/2002gb001891. DOI

Bolin, B., Degens, E. T., Kempe, S. & Ketner, P. The global carbon cycle - Scope Report 13. (Unwin Brothers Ltd., 1979).

Ridgwell A, Zeebe RE. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters. 2005;234:299–315. doi: 10.1016/j.epsl.2005.03.006. DOI

Lauerwald R, Hartmann J, Moosdorf N, Kempe S, Raymond PA. What controls the spatial patterns of the riverine carbonate system? - A case study for North America. Chemical Geology. 2013;337:114–127. doi: 10.1016/j.chemgeo.2012.11.011. DOI

Zeebe, R. E. & Wolf-Gladrow, D. A. CO2 in seawater: equilibrium, kinetics, isotopes. (Gulf Professional Publishing, 2001).

Komar N, Zeebe RE. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography. 2016;31:115–130. doi: 10.1002/2015pa002834. DOI

Battin TJ, et al. The boundless carbon cycle. Nature Geoscience. 2009;2:598–600. doi: 10.1038/ngeo618. DOI

Tranvik LJ, et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography. 2009;54:2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298. DOI

Kalff, J. Limnology. (Prentice Hall, 2002).

Likens GE, Driscoll CT, Buso DC. Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science. 1996;272:244–246. doi: 10.1126/science.272.5259.244. DOI

Reuss, J. O. & Johnson, D. W. Acid deposition and acidification of soils and waters. Vol. 59 (Springer Verlag, 1986).

Monteith DT, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 2007;450:537–U539. doi: 10.1038/nature06316. PubMed DOI

Evans CD, et al. Recovery from acidification in European surface waters. Hydrology and Earth System Sciences. 2001;5:283–297. doi: 10.5194/hess-5-283-2001. DOI

Likens GE, Buso DC. Dilution and the Elusive Baseline. Environmental Science & Technology. 2012;46:4382–4387. doi: 10.1021/es3000189. PubMed DOI

Watmough SA, Aherne J, Dillon PJ. Potential impact of forest harvesting on lake chemistry in south-central Ontario at current levels of acid deposition. Canadian Journal of Fisheries and Aquatic Sciences. 2003;60:1095–1103. doi: 10.1139/f03-093. DOI

Hartmann, J., Lauerwald, R. & Moosdorf, N. A brief overview of the GLObal RIver CHemistry database, GLORICH. In Geochemistry of the Earth’s Surface Ges-10 Vol. 10 Procedia Earth and Planetary Science (ed. Gaillardet, J.) 23–27 (Elsevier Science Bv, 2014).

Weyhenmeyer GA, Kortelainen P, Sobek S, Müller R, Rantakari M. Carbon dioxide in boreal surface waters: a comparison of lakes and streams. Ecosystems. 2012;15:1295–1307. doi: 10.1007/s10021-012-9585-4. DOI

Abril G, et al. Technical Note: Large overestimation of pCO(2) calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences. 2015;12:67–78. doi: 10.5194/bg-12-67-2015. DOI

Leys BA, et al. Natural and anthropogenic drivers of calcium depletion in a northern forest during the last millennium. Proceedings of the National Academy of Sciences of the United States of America. 2016;113:6934–6938. doi: 10.1073/pnas.1604909113. PubMed DOI PMC

Lerman A, Wu LL, Mackenzie FT. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Marine Chemistry. 2007;106:326–350. doi: 10.1016/j.marchem.2006.04.004. DOI

Hartmann J, Moosdorf N, Lauerwald R, Hinderer M, West AJ. Global chemical weathering and associated P-release - The role of lithology, temperature and soil properties. Chemical Geology. 2014;363:145–163. doi: 10.1016/j.chemgeo.2013.10.025. DOI

Likens GE, et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry. 1998;41:89–173. doi: 10.1023/a:1005984620681. DOI

Rodhe H, Dentener F, Schulz M. The global distribution of acidifying wet deposition. Environmental Science & Technology. 2002;36:4382–4388. doi: 10.1021/es020057g. PubMed DOI

Lawrence GB, et al. Soil calcium status and the response of stream chemistry to changing acidic deposition rates. Ecological Applications. 1999;9:1059–1072. doi: 10.2307/2641351. DOI

Otsuki A, Wetzel RG. Calcium and total alkalinity budgets and calcium-carbonate precipitation of a small hard-water lake. Archiv Fur Hydrobiologie. 1974;73:14–30. doi: 10.1127/archiv-hydrobiol/73/1974/14. DOI

Strong AE, Eadie BJ. Satellite-observations of calcium-carbonate precipitations in great lakes. Limnology and Oceanography. 1978;23:877–887. doi: 10.4319/lo.1978.23.5.0877. DOI

Groleau A, Sarazin G, Vincon-Leite B, Tassin B, Quiblier-Lloberas C. Tracing calcite precipitation with specific conductance in a hard water alpine lake (Lake Bourget) Water Research. 2000;34:4151–4160. doi: 10.1016/s0043-1354(00)00191-3. DOI

Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical equilibria and rates in natural waters., (Wiley Interscience, 1996).

Kopacek J, Hejzlar J, Porcal P, Posch M. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010. Science of the Total Environment. 2014;470:543–550. doi: 10.1016/j.scitotenv.2013.10.013. PubMed DOI

Raymond PA, Oh NH. Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth and Planetary Science Letters. 2009;284:50–56. doi: 10.1016/j.epsl.2009.04.006. DOI

Neary BP, Dillon PJ. Effects of sulfur deposition on lake-water chemistry in Ontario, Canada. Nature. 1988;333:340–343. doi: 10.1038/333340a0. DOI

Likens GE, Wright RF, Galloway JN, Butler TJ. Acid rain. Scientific American. 1979;241:43–51. doi: 10.1038/scientificamerican1079-43. DOI

Waller K, Driscoll C, Lynch J, Newcomb D, Roy K. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition. Atmospheric Environment. 2012;46:56–64. doi: 10.1016/j.atmosenv.2011.10.031. DOI

Yao HX, et al. Nearshore human interventions reverse patterns of decline in lake calcium budgets in central Ontario as demonstrated by mass-balance analyses. Water Resources Research. 2011;47:13. doi: 10.1029/2010wr010159. DOI

Driscoll CT, et al. The experimental watershed liming study: Comparison of lake and watershed neutralization strategies. Biogeochemistry. 1996;32:143–174. doi: 10.1007/bf02187137. DOI

Palmer SM, Driscoll CT, Johnson CE. Long-term trends in soil solution and stream water chemistry at the Hubbard Brook Experimental Forest: relationship with landscape position. Biogeochemistry. 2004;68:51–70. doi: 10.1023/B:BIOG.0000025741.88474.0d. DOI

Kopacek J, et al. Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environmental Science & Technology. 2017;51:159–166. doi: 10.1021/acs.est.6b03575. PubMed DOI

Rogora M, et al. Thirty years of chemical changes in alpine acid-sensitive lakes in the Alps. Water Air and Soil Pollution. 2013;224:20. doi: 10.1007/s11270-013-1746-3. DOI

Dugan HA, et al. Salting our freshwater lakes. Proceedings of the National Academy of Sciences of the United States of America. 2017;114:4453–4458. doi: 10.1073/pnas.1620211114. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace