Widespread diminishing anthropogenic effects on calcium in freshwaters
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31320731
PubMed Central
PMC6639332
DOI
10.1038/s41598-019-46838-w
PII: 10.1038/s41598-019-46838-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations ≤ 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in >200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.
Biological Station Lake Neusiedl 7142 Illmitz Austria
CNR Water Research Institute L go Tonolli 50 1 28922 Verbania Pallanza Italy
Department of Biological Sciences Rensselaer Polytechnic Institute Troy NY 12180 USA
Department of Ecology and Genetics Limnology Uppsala University Norbyvägen 18D 752 36 Uppsala Sweden
Dorset Environmental Science Centre Dorset ON P0A 1E0 Canada
IISD Experimental Lakes Area Inc 111 Lombard Avenue Suite 325 Winnipeg R3B 0T5 Canada
INRA CARRTEL 75 bis avenue de Corzent 74203 Thonon les Bains cx France
Institute of Biology University of Latvia Miera Str 3 Salaspils LV 2169 Latvia
Institute of Hydrobiology Biology Centre CAS Na Sádkách 7 370 05 České Budějovice Czech Republic
Irstea RiverLy 5 Rue de la Doua 69625 Villeurbanne cedex France
National Institute of Water and Atmospheric Research Hamilton New Zealand
Norwegian Institute for Water Research Gaustadalléen 23 NO 0349 Oslo Norway
U S Environmental Protection Agency Clean Air Markets Division Washington DC 20460 USA
U S Geological Survey New York Water Science Center Troy NY 12180 USA
Vermont Department of Environmental Services 1 National Life Drive Montpelier Vermont USA
Zobrazit více v PubMed
Moran, L. A., Horton, H. R., Scrimgeour, K. G. & Perry, M. D. Principles of Biochemistry. (Pearson, 2012).
Hessen DO, Andersen T, Tominaga K, Finstad AG. When soft waters becomes softer; drivers of critically low levels of Ca in Norwegian lakes. Limnology and Oceanography. 2017;62:289–298. doi: 10.1002/lno.10394. DOI
Sterner, R. W. & Elser, J. J. Ecological stoichiometry: The biology of elements from molecules to the biosphere. (Princeton University Press, 2002).
Jeziorski A, et al. The widespread threat of calcium decline in fresh waters. Science. 2008;322:1374–1377. doi: 10.1126/science.1164949. PubMed DOI
Cairns A, Yan N. A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environmental Reviews. 2009;17:67–79. doi: 10.1139/a09-005. DOI
Jeziorski A, et al. The jellification of north temperate lakes. Proceedings of the Royal Society B-Biological Sciences. 2015;282:9. doi: 10.1098/rspb.2014.2449. PubMed DOI PMC
Hessen DO, Faafeng BA, Andersen T. Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure. Canadian Journal of Fisheries and Aquatic Sciences. 1995;52:733–742. doi: 10.1139/f95-073. DOI
Waervagen SB, Rukke NA, Hessen DO. Calcium content of crustacean zooplankton and its potential role in species distribution. Freshwater Biology. 2002;47:1866–1878. doi: 10.1046/j.1365-2427.2002.00934.x. DOI
Jeziorski A, Smol JP. The ecological impacts of lakewater calcium decline on softwater boreal ecosystems. Environmental Reviews. 2017;25:245–253. doi: 10.1139/er-2016-0054. DOI
Azan SSE, Arnott SE. The impact of calcium decline on population growth rates of crustacean zooplankton in Canadian Shield lakes. Limnology and Oceanography. 2018;63:602–616. doi: 10.1002/lno.10653. DOI
Keller W, Dixit SS, Heneberry J. Calcium declines in northeastern Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences. 2001;58:2011–2020. doi: 10.1139/cjfas-58-10-2011. DOI
Moss B. Influence of environmental factors on distribution of freshwater algae - experimental study. 1. Introduction and influence of calcium concentration. Journal of Ecology. 1972;60:917–932. doi: 10.2307/2258575. DOI
Enge E, Hesthagen T, Auestad BH. Highly dilute water chemistry during late snowmelt period affects recruitment of brown trout (Salmo trutta) in River Sira, southwestern Norway. Limnologica. 2017;62:97–103. doi: 10.1016/j.limno.2016.11.009. DOI
Pabian SE, Brittingham MC. Soil calcium availability limits forest songbird productivity and density. Auk. 2011;128:441–447. doi: 10.1525/auk.2011.10283. DOI
Meybeck, M. Global occurrence of major elements in rivers. In Surface and groundwater, weathering, and soils Vol. 5 Treatise onGeochemistry (ed. Drever, J. I.) 207–223 (Elsevier, 2003).
Verpoorter C, Kutser T, Seekell DA, Tranvik LJ. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters. 2014;41:6396–6402. doi: 10.1002/2014gl060641. DOI
Meybeck M. Global chemical-weathering of surficial rocks estimated from river dissolved loads. American Journal of Science. 1987;287:401–428. doi: 10.2475/ajs.287.5.401. DOI
Suchet PA, Probst JL, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles. 2003;17:14. doi: 10.1029/2002gb001891. DOI
Bolin, B., Degens, E. T., Kempe, S. & Ketner, P. The global carbon cycle - Scope Report 13. (Unwin Brothers Ltd., 1979).
Ridgwell A, Zeebe RE. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters. 2005;234:299–315. doi: 10.1016/j.epsl.2005.03.006. DOI
Lauerwald R, Hartmann J, Moosdorf N, Kempe S, Raymond PA. What controls the spatial patterns of the riverine carbonate system? - A case study for North America. Chemical Geology. 2013;337:114–127. doi: 10.1016/j.chemgeo.2012.11.011. DOI
Zeebe, R. E. & Wolf-Gladrow, D. A. CO2 in seawater: equilibrium, kinetics, isotopes. (Gulf Professional Publishing, 2001).
Komar N, Zeebe RE. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography. 2016;31:115–130. doi: 10.1002/2015pa002834. DOI
Battin TJ, et al. The boundless carbon cycle. Nature Geoscience. 2009;2:598–600. doi: 10.1038/ngeo618. DOI
Tranvik LJ, et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography. 2009;54:2298–2314. doi: 10.4319/lo.2009.54.6_part_2.2298. DOI
Kalff, J. Limnology. (Prentice Hall, 2002).
Likens GE, Driscoll CT, Buso DC. Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science. 1996;272:244–246. doi: 10.1126/science.272.5259.244. DOI
Reuss, J. O. & Johnson, D. W. Acid deposition and acidification of soils and waters. Vol. 59 (Springer Verlag, 1986).
Monteith DT, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 2007;450:537–U539. doi: 10.1038/nature06316. PubMed DOI
Evans CD, et al. Recovery from acidification in European surface waters. Hydrology and Earth System Sciences. 2001;5:283–297. doi: 10.5194/hess-5-283-2001. DOI
Likens GE, Buso DC. Dilution and the Elusive Baseline. Environmental Science & Technology. 2012;46:4382–4387. doi: 10.1021/es3000189. PubMed DOI
Watmough SA, Aherne J, Dillon PJ. Potential impact of forest harvesting on lake chemistry in south-central Ontario at current levels of acid deposition. Canadian Journal of Fisheries and Aquatic Sciences. 2003;60:1095–1103. doi: 10.1139/f03-093. DOI
Hartmann, J., Lauerwald, R. & Moosdorf, N. A brief overview of the GLObal RIver CHemistry database, GLORICH. In Geochemistry of the Earth’s Surface Ges-10 Vol. 10 Procedia Earth and Planetary Science (ed. Gaillardet, J.) 23–27 (Elsevier Science Bv, 2014).
Weyhenmeyer GA, Kortelainen P, Sobek S, Müller R, Rantakari M. Carbon dioxide in boreal surface waters: a comparison of lakes and streams. Ecosystems. 2012;15:1295–1307. doi: 10.1007/s10021-012-9585-4. DOI
Abril G, et al. Technical Note: Large overestimation of pCO(2) calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences. 2015;12:67–78. doi: 10.5194/bg-12-67-2015. DOI
Leys BA, et al. Natural and anthropogenic drivers of calcium depletion in a northern forest during the last millennium. Proceedings of the National Academy of Sciences of the United States of America. 2016;113:6934–6938. doi: 10.1073/pnas.1604909113. PubMed DOI PMC
Lerman A, Wu LL, Mackenzie FT. CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Marine Chemistry. 2007;106:326–350. doi: 10.1016/j.marchem.2006.04.004. DOI
Hartmann J, Moosdorf N, Lauerwald R, Hinderer M, West AJ. Global chemical weathering and associated P-release - The role of lithology, temperature and soil properties. Chemical Geology. 2014;363:145–163. doi: 10.1016/j.chemgeo.2013.10.025. DOI
Likens GE, et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry. 1998;41:89–173. doi: 10.1023/a:1005984620681. DOI
Rodhe H, Dentener F, Schulz M. The global distribution of acidifying wet deposition. Environmental Science & Technology. 2002;36:4382–4388. doi: 10.1021/es020057g. PubMed DOI
Lawrence GB, et al. Soil calcium status and the response of stream chemistry to changing acidic deposition rates. Ecological Applications. 1999;9:1059–1072. doi: 10.2307/2641351. DOI
Otsuki A, Wetzel RG. Calcium and total alkalinity budgets and calcium-carbonate precipitation of a small hard-water lake. Archiv Fur Hydrobiologie. 1974;73:14–30. doi: 10.1127/archiv-hydrobiol/73/1974/14. DOI
Strong AE, Eadie BJ. Satellite-observations of calcium-carbonate precipitations in great lakes. Limnology and Oceanography. 1978;23:877–887. doi: 10.4319/lo.1978.23.5.0877. DOI
Groleau A, Sarazin G, Vincon-Leite B, Tassin B, Quiblier-Lloberas C. Tracing calcite precipitation with specific conductance in a hard water alpine lake (Lake Bourget) Water Research. 2000;34:4151–4160. doi: 10.1016/s0043-1354(00)00191-3. DOI
Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical equilibria and rates in natural waters., (Wiley Interscience, 1996).
Kopacek J, Hejzlar J, Porcal P, Posch M. Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900-2010. Science of the Total Environment. 2014;470:543–550. doi: 10.1016/j.scitotenv.2013.10.013. PubMed DOI
Raymond PA, Oh NH. Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth and Planetary Science Letters. 2009;284:50–56. doi: 10.1016/j.epsl.2009.04.006. DOI
Neary BP, Dillon PJ. Effects of sulfur deposition on lake-water chemistry in Ontario, Canada. Nature. 1988;333:340–343. doi: 10.1038/333340a0. DOI
Likens GE, Wright RF, Galloway JN, Butler TJ. Acid rain. Scientific American. 1979;241:43–51. doi: 10.1038/scientificamerican1079-43. DOI
Waller K, Driscoll C, Lynch J, Newcomb D, Roy K. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition. Atmospheric Environment. 2012;46:56–64. doi: 10.1016/j.atmosenv.2011.10.031. DOI
Yao HX, et al. Nearshore human interventions reverse patterns of decline in lake calcium budgets in central Ontario as demonstrated by mass-balance analyses. Water Resources Research. 2011;47:13. doi: 10.1029/2010wr010159. DOI
Driscoll CT, et al. The experimental watershed liming study: Comparison of lake and watershed neutralization strategies. Biogeochemistry. 1996;32:143–174. doi: 10.1007/bf02187137. DOI
Palmer SM, Driscoll CT, Johnson CE. Long-term trends in soil solution and stream water chemistry at the Hubbard Brook Experimental Forest: relationship with landscape position. Biogeochemistry. 2004;68:51–70. doi: 10.1023/B:BIOG.0000025741.88474.0d. DOI
Kopacek J, et al. Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environmental Science & Technology. 2017;51:159–166. doi: 10.1021/acs.est.6b03575. PubMed DOI
Rogora M, et al. Thirty years of chemical changes in alpine acid-sensitive lakes in the Alps. Water Air and Soil Pollution. 2013;224:20. doi: 10.1007/s11270-013-1746-3. DOI
Dugan HA, et al. Salting our freshwater lakes. Proceedings of the National Academy of Sciences of the United States of America. 2017;114:4453–4458. doi: 10.1073/pnas.1620211114. PubMed DOI PMC