Transcriptome Dynamics of Pseudomonas aeruginosa during Transition from Overlapping To Non-Overlapping Cell Cycles
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36786632
PubMed Central
PMC10134858
DOI
10.1128/msystems.01130-22
Knihovny.cz E-zdroje
- Klíčová slova
- DNA replication, Pseudomonas aeruginosa, cell cycle, transcription,
- MeSH
- buněčné dělení genetika MeSH
- DNA metabolismus MeSH
- fylogeneze MeSH
- Pseudomonas aeruginosa * genetika MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
Bacteria either duplicate their chromosome once per cell division or a new round of replication is initiated before the cells divide, thus cell cycles overlap. Here, we show that the opportunistic pathogen Pseudomonas aeruginosa switches from fast growth with overlapping cell cycles to sustained slow growth with only one replication round per cell division when cultivated under standard laboratory conditions. The transition was characterized by fast-paced, sequential changes in transcriptional activity along the ori-ter axis of the chromosome reflecting adaptation to the metabolic needs during both growth phases. Quorum sensing (QS) activity was highest at the onset of the slow growth phase with non-overlapping cell cycles. RNA sequencing of subpopulations of these cultures sorted based on their DNA content, revealed a strong gene dosage effect as well as specific expression patterns for replicating and nonreplicating cells. Expression of flagella and mexE, involved in multidrug efflux was restricted to cells that did not replicate, while those that did showed a high activity of the cell division locus and recombination genes. A possible role of QS in the formation of these subpopulations upon switching to non-overlapping cell cycles could be a subject of further research. IMPORTANCE The coordination of gene expression with the cell cycle has so far been studied only in a few bacteria, the bottleneck being the need for synchronized cultures. Here, we determined replication-associated effects on transcription by comparing Pseudomonas aeruginosa cultures that differ in their growth mode and number of replicating chromosomes. We further show that cell cycle-specific gene regulation can be principally identified by RNA sequencing of subpopulations from cultures that replicate only once per cell division and that are sorted according to their DNA content. Our approach opens the possibility to study asynchronously growing bacteria from a wide phylogenetic range and thereby enhance our understanding of the evolution of cell cycle control on the transcriptional level.
Central Facility for Microscopy Helmholtz Centre for Infection Research Braunschweig Germany
Cluster of Excellence RESIST Hannover Medical School Hannover Germany
Department of Clinical Microbiology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
Department of Molecular Bacteriology Helmholtz Centre for Infection Research Braunschweig Germany
Institute of Microbiology of the Czech Academy of Science Center Algatech Třeboň Czech Republic
Platform Genome Analytics Helmholtz Centre for Infection Research Braunschweig Germany
Zobrazit více v PubMed
Reyes-Lamothe R, Sherratt DJ. 2019. The bacterial cell cycle, chromosome inheritance and cell growth. Nat Rev Microbiol 17:467–478. doi:10.1038/s41579-019-0212-7. PubMed DOI
Couturier E, Rocha EPC. 2006. Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol 59:1506–1518. doi:10.1111/j.1365-2958.2006.05046.x. PubMed DOI
Slager J, Veening JW. 2016. Hard-wired control of bacterial processes by chromosomal gene location. Trends Microbiol 24:788–800. doi:10.1016/j.tim.2016.06.003. PubMed DOI PMC
Soler-Bistué A, Mondotte JA, Bland MJ, Val ME, Saleh MC, Mazel D. 2015. Genomic location of the major ribosomal protein gene locus determines vibrio cholerae global growth and infectivity. PLoS Genet 11:e1005156. doi:10.1371/journal.pgen.1005156. PubMed DOI PMC
Narula J, Kuchina A, Lee D Yeon D, Fujita M, Süel GM, Igoshin OA. 2015. Chromosomal arrangement of phosphorelay genes couples sporulation and DNA replication. Cell 162:328–337. doi:10.1016/j.cell.2015.06.012. PubMed DOI PMC
Stokke C, Waldminghaus T, Skarstad K. 2011. Replication patterns and organization of replication forks in Vibrio cholerae. Microbiology (Reading) 157:695–708. doi:10.1099/mic.0.045112-0. PubMed DOI
Quardokus EM, Brun YV. 2003. Cell cycle timing and developmental checkpoints in Caulobacter crescentus. Curr Opin Microbiol 6:541–549. doi:10.1016/j.mib.2003.10.013. PubMed DOI
Nathwani D, Raman G, Sulham K, Gavaghan M, Menon V. 2014. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control 3:32. doi:10.1186/2047-2994-3-32. PubMed DOI PMC
Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, Molin S, Johansen HK. 2021. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 19:331–342. doi:10.1038/s41579-020-00477-5. PubMed DOI
La Rosa R, Johansen HK, Molin S. 2018. Convergent metabolic specialization through distinct evolutionary paths in Pseudomonas aeruginosa. mBio 9:e00269-18. doi:10.1128/mBio.00269-18. PubMed DOI PMC
Gibson B, Wilson DJ, Feil E, Eyre-Walker A. 2018. The distribution of bacterial doubling times in the wild. Proc R Soc B 285:20180789. doi:10.1098/rspb.2018.0789. PubMed DOI PMC
Vallet-Gely I, Boccard F. 2013. Chromosomal organization and segregation in Pseudomonas aeruginosa. PLoS Genet 9:e1003492. doi:10.1371/journal.pgen.1003492. PubMed DOI PMC
Bhowmik BK, Clevenger AL, Zhao H, Rybenkov VV. 2018. Segregation but not replication of the Pseudomonas aeruginosa chromosome terminates at Dif. mBio 9:e01088-18. doi:10.1128/mBio.01088-18. PubMed DOI PMC
Dötsch A, Schniederjans M, Khaledi A, Hornischer K, Schulz S, Bielecka A, Eckweiler D, Pohl S, Häussler S. 2015. The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation. mBio 6:e00749-15. doi:10.1128/mBio.00749-15. PubMed DOI PMC
Tan J, Hammond JH, Hogan DA, Greene CS. 2016. ADAGE-based integration of publicly available Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. mSystems 1:e00025-15. doi:10.1128/mSystems.00025-15. PubMed DOI PMC
Hornischer K, Khaledi A, Pohl S, Schniederjans M, Pezoldt L, Casilag F, Muthukumarasamy U, Bruchmann S, Thöming J, Kordes A, Häussler S. 2019. BACTOME—a reference database to explore the sequence- and gene expression-variation landscape of Pseudomonas aeruginosa clinical isolates. Nucleic Acids Res 47:D716–D720. doi:10.1093/nar/gky895. PubMed DOI PMC
Selim H, Radwan TEE, Reyad AM. 2022. Regulation of T3SS synthesis, assembly and secretion in Pseudomonas aeruginosa. Arch Microbiol 204:468. doi:10.1007/s00203-022-03068-5. PubMed DOI PMC
Mesaros N, Glupczynski Y, Avrain L, Caceres NE, Tulkens PM, Van Bambeke F. 2007. A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother 59:378–386. doi:10.1093/jac/dkl504. PubMed DOI
Schuster M, Lostroh CP, Ogi T, Greenberg EP. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079. doi:10.1128/JB.185.7.2066-2079.2003. PubMed DOI PMC
Chadha J, Harjai K, Chhibber S. 2022. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol 24:2630–2656. doi:10.1111/1462-2920.15784. PubMed DOI
Díaz-Pérez AL, Zavala-Hernández AN, Cervantes C, Campos-García J. 2004. The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 70:5102–5110. doi:10.1128/AEM.70.9.5102-5110.2004. PubMed DOI PMC
Herrick J, Sclavi B. 2007. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 63:22–34. doi:10.1111/j.1365-2958.2006.05493.x. PubMed DOI
Margolin W. 2005. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862–871. doi:10.1038/nrm1745. PubMed DOI PMC
Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S. 2008. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105. doi:10.1073/pnas.0711982105. PubMed DOI PMC
Sobetzko P, Travers A, Muskhelishvili G. 2012. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci USA 109:E42–E50. doi:10.1073/pnas.1108229109. PubMed DOI PMC
Rossi E, Falcone M, Molin S, Johansen HK. 2018. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat Commun 9:3459. doi:10.1038/s41467-018-05944-5. PubMed DOI PMC
Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dötsch A, Hornischer K, Bruchmann S, Düvel J, Häussler S. 2015. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog 11:e1004744. doi:10.1371/journal.ppat.1004744. PubMed DOI PMC
Lato DF, Golding GB. 2020. Spatial patterns of gene expression in bacterial genomes. J Mol Evol 88:510–520. doi:10.1007/s00239-020-09951-3. PubMed DOI PMC
Tomasch J, Koppenhöfer S, Lang AS. 2021. Connection Between chromosomal location and function of CtrA phosphorelay genes in alphaproteobacteria. Front Microbiol 12:662907. doi:10.3389/fmicb.2021.662907. PubMed DOI PMC
Rattray JB, Thomas SA, Wang Y, Molotkova E, Gurney J, Varga JJ, Brown SP. 2022. Bacterial quorum sensing allows graded and bimodal cellular responses to variations in population density. mBio 13:e00745-22. doi:10.1128/mbio.00745-22. PubMed DOI PMC
Anetzberger C, Pirch T, Jung K. 2009. Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol Microbiol 73:267–277. doi:10.1111/j.1365-2958.2009.06768.x. PubMed DOI
Patzelt D, Wang H, Buchholz I, Rohde M, Gröbe L, Pradella S, Neumann A, Schulz S, Heyber S, Münch K, Münch R, Jahn D, Wagner-Döbler I, Tomasch J. 2013. You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J 7:2274–2286. doi:10.1038/ismej.2013.107. PubMed DOI PMC
Reck M, Tomasch J, Wagner-Döbler I. 2015. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in streptococcus mutans. PLoS Genet 11:e1005353. doi:10.1371/journal.pgen.1005353. PubMed DOI PMC
Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D, Haverich A, Warnecke G, Häussler S. 2019. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 10:3397. doi:10.1038/s41467-019-11414-3. PubMed DOI PMC
Jeske A, Arce-Rodriguez A, Thöming JG, Tomasch J, Häussler S. 2022. Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates. NPJ Biofilms Microbiomes 8:6–14. doi:10.1038/s41522-022-00268-1. PubMed DOI PMC
Laub MT, McAdams HH, Feldblyum T, Fraser CM, Shapiro L. 2000. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290:2144–2148. doi:10.1126/science.290.5499.2144. PubMed DOI
Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW. 2012. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PLoS One 7:e43432. doi:10.1371/journal.pone.0043432. PubMed DOI PMC
De Nisco NJ, Abo RP, Wu CM, Penterman J, Walker GC. 2014. Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 111:3217–3224. doi:10.1073/pnas.1400421111. PubMed DOI PMC
Bandekar AC, Subedi S, Ioerger TR, Sassetti CM. 2020. Cell-Cycle-Associated Expression Patterns Predict Gene Function in Mycobacteria. Curr Biol 30:3961–3971.e6. doi:10.1016/j.cub.2020.07.070. PubMed DOI PMC
Pountain A, Jiang P, Podkowik M, Shopsin B, Torres VJ, Yanai I. 2022. A quantitative model for the transcriptional landscape of the bacterial cell cycle. bioRxiv. doi:10.1101/2022.10.22.513359. DOI
van Teeseling MCF, Thanbichler M. 2020. Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol Chem 401:1349–1363. doi:10.1515/hsz-2020-0235. PubMed DOI
Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103:2833–2838. doi:10.1073/pnas.0511100103. PubMed DOI PMC
Van P, Jiang W, Gottardo R, Finak G. 2018. ggCyto: next generation open-source visualization software for cytometry. Bioinformatics 34:3951–3953. doi:10.1093/bioinformatics/bty441. PubMed DOI PMC
Bense S, Witte J, Preuße M, Koska M, Pezoldt L, Dröge A, Hartmann O, Müsken M, Schulze J, Fiebig T, Bähre H, Felgner S, Pich A, Häussler S. 2022. Pseudomonas aeruginosa post-translational responses to elevated c-di-GMP levels. Mol Microbiol 117:1213–1226. doi:10.1111/mmi.14902. PubMed DOI
Avraham R, Haseley N, Fan A, Bloom-Ackermann Z, Livny J, Hung DT. 2016. A highly multiplexed and sensitive RNA-seq protocol for simultaneous analysis of host and pathogen transcriptomes. Nat Protoc 11:1477–1491. doi:10.1038/nprot.2016.090. PubMed DOI
Freiherr von Boeselager R, Pfeifer E, Frunzke J. 2018. Cytometry meets next-generation sequencing – RNA-Seq of sorted subpopulations reveals regional replication and iron-triggered prophage induction in Corynebacterium glutamicum. Sci Rep 8:14856. doi:10.1038/s41598-018-32997-9. PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. doi:10.1093/bioinformatics/btt656. PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:10.1093/bioinformatics/btp616. PubMed DOI PMC
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Series B (Methodological 57:289–300. doi:10.1111/j.2517-6161.1995.tb02031.x. DOI
Futschik ME, Carlisle B. 2005. Noise-robust soft clustering of gene expression time-course data. J Bioinform Comput Biol 3:965–988. doi:10.1142/s0219720005001375. PubMed DOI