Microbial remineralization processes during postspring-bloom with excess phosphate available in the northern Baltic Sea
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
731065
European Commission
2021/03/Y/NZ8/00076
National Science Centre, Poland
GR1540/37-1
DFG
CEP - Centrální evidence projektů
PubMed
39039015
PubMed Central
PMC11302951
DOI
10.1093/femsec/fiae103
PII: 7718121
Knihovny.cz E-zdroje
- Klíčová slova
- excess phosphate, extracellular enzyme activity, mesocosm, northern Baltic Sea, organic matter degradation, postspring-bloom,
- MeSH
- Bacteria * metabolismus genetika růst a vývoj MeSH
- dusík * metabolismus MeSH
- eutrofizace MeSH
- fosfáty * metabolismus MeSH
- fosfor * metabolismus MeSH
- heterotrofní procesy MeSH
- mořská voda * mikrobiologie chemie MeSH
- oceány a moře MeSH
- uhlík * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Finsko MeSH
- oceány a moře MeSH
- Názvy látek
- dusík * MeSH
- fosfáty * MeSH
- fosfor * MeSH
- uhlík * MeSH
The phosphorus (P) concentration is increasing in parts of the Baltic Sea following the spring bloom. The fate of this excess P-pool is an open question, and here we investigate the role of microbial degradation processes in the excess P assimilation phase. During a 17-day-long mesocosm experiment in the southwest Finnish archipelago, we examined nitrogen, phosphorus, and carbon acquiring extracellular enzyme activities in three size fractions (<0.2, 0.2-3, and >3 µm), bacterial abundance, production, community composition, and its predicted metabolic functions. The mesocosms received carbon (C) and nitrogen (N) amendments individually and in combination (NC) to distinguish between heterotrophic and autotrophic processes. Alkaline phosphatase activity occurred mainly in the dissolved form and likely contributed to the excess phosphate conditions together with grazing. At the beginning of the experiment, peptidolytic and glycolytic enzymes were mostly produced by free-living bacteria. However, by the end of the experiment, the NC-treatment induced a shift in peptidolytic and glycolytic activities and degradation of phosphomonoesters toward the particle-associated fraction, likely as a consequence of higher substrate availability. This would potentially promote retention of nutrients in the surface as opposed to sedimentation, but direct sedimentation measurements are needed to verify this hypothesis.
Centre for Coastal Research University of Agder Universitetsveien 25 4604 Kristiansand Norway
Institute of Biology and Biochemistry Potsdam University Maulbeerallee 2 14469 Potsdam Germany
Tvärminne Zoological Station University of Helsinki J A Palménin tie 260 10900 Hanko Finland
Zobrazit více v PubMed
Allers E, Gómez-Consarnau L, Pinhassi J et al. Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol. 2007;9:2417–29. PubMed
Allgaier M, Bruckner S, Jaspers E et al. Intra- and inter-lake variability of free-living and particle-associated actinobacteria communities. Environ Microbiol. 2007;9:2728–41. PubMed
Allison SD, Lu L, Kent AG et al. Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates. Front Microbiol. 2014;5. 10.3389/fmicb.2014.00169. PubMed DOI PMC
Azúa I, Unanue M, Ayo B et al. Influence of organic matter quality in the cleavage of polymers by marine bacterial communities. J Plankton Res. 2003;25:1451–60.
Baltar F. Watch out for the "living dead": cell-free enzymes and their fate. Front Microbiol. 2018;8. PubMed PMC
Baltar F, Arístegui J, Gasol JM et al. High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat Microb Ecol. 2010;58:287–302.
Baltar F, Legrand C, Pinhassi J. Cell-free extracellular enzymatic activity is linked to seasonal temperature changes: a case study in the Baltic Sea. Biogeosciences. 2016;13:2815–21.
Baltar F, de Corte D, Yokokawa T. Bacterial stress and mortality may be a source of cell-free enzymatic activity in the marine environment. Microbes Environ. 2019;34:83–8. PubMed PMC
Barbera P. EPA-ng: efficient probabilistic assignment for DNA sequences. V.0.3.8. GitHub, 2019. https://github.com/pierrebarbera/epa-ng (1 March 2023, date last accessed).
Barbera P, Kozlov AM, Czech L et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. 2019;68:365–9. PubMed PMC
Bashenkhaeva MV, Galachyants YP, Khanaev IV et al. Comparative analysis of free-living and particle-associated bacterial communities of Lake Baikal during the ice-covered period. J Great Lakes Res. 2020;46:508–18.
Bochdansky AB, Puskaric S, Herndl GJ. Influence of zooplankton grazing on free dissolved enzymes in the sea. Mar Ecol Prog Ser. 1995;121:53–63.
Bochdansky AB, Clouse MA, Herndl GJ. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum. Sci Rep. 2016;6. 10.1038/srep22633. PubMed DOI PMC
Boyd P, Trull T. Understanding the export of biogenic particles in oceanic waters: is there consensus?. Prog Oceanogr. 2007;72:276–312.
Bunse C, Bertos-Fortis M, Sassenhagen I et al. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom. Front Microbiol. 2016;7. 10.3389/fmicb.2016.00517. PubMed DOI PMC
Bunse C, Israelsson S, Baltar F et al. High frequency multi-year variability in Baltic Sea microbial plankton stocks and activities. Front Microbiol. 2019;9. 10.3389/fmicb.2018.03296. PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. PubMed PMC
Camarena-Gómez MT, Ruiz-González C, Piiparinen J et al. Bacterioplankton dynamics driven by interannual and spatial variation indiatom and dinoflagellate spring bloom communities in the Baltic Sea. Limnol Oceanogr. 2020;66:255–271.
Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature. 1988;332:441.
Chróst RJ. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst R.J. (ed.), Microbial Enzymes in Aquatic Environments. Brock/Springer Series in Contemporary Bioscience. New York: Springer, 1991.
Chrzanowski TH, Kyle M. Ratios of carbon, nitrogen and phosphorus in Pseudomonas fluorescens as a model for bacterial element ratios and nutrient regeneration. Aquat Microb Ecol. 1996;10:115–22.
Delmont TO, Hammar KM, Ducklow HW et al. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front Microbiol. 2014;5. 10.3389/fmicb.2014.00646. PubMed DOI PMC
Diepenbroek M, Glöckner F, Grobe P et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German Federation for the Curation of Biological Data (GFBio). In: Plödereder E, Grunske L, Schneider E, Ull D (eds.), Proceedings of the Informatik 2014–Big Data Komplexität Meistern. GI-edn. Vol. 232. Lecture Notes in Informatics (LNI). Bonn: Köllen Verlag; 2014, 1711–24.
Douglas GM, Maffei VJ, Zaneveld JR et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8. PubMed PMC
Eigemann F, Rahav E, Grossart H-P et al. Phytoplankton producer species and transformation of released compounds over time define bacterial communities following phytoplankton dissolved organic matter pulses. Appl Environ Microbiol. 2023;89:1–16. PubMed PMC
Eilola K, Stigebrandt A. On the seasonal nitrogen dynamics of the Baltic proper biochemical reactor. J Mar Res. 1999;57:693–713.
Fawcett SE, Ward BB. Phytoplankton succession and nitrogen utilization during the development of an upwelling bloom. Mar Ecol Prog Ser. 2011;428:13–31.
Fuhrman J, Azam F. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol. 1982;66:109–20.
Gasol JM, Del Giorgio PA. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar. 2000;64:197–224.
González-Gil S, Keafer BA, Jovine RV et al. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar Ecol Prog Ser. 1998;164:21–35.
Grasshoff K, Ehrhardt M, Kremling K. Methods of Seawater Analysis. 3rd edn. Weinheim: Wiley-VCH, 1999.
Grossart H-P. Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ Microbiol Rep. 2010;2:706–14. PubMed
Grossart H-P, Ploug H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol Oceanogr. 2001;46:267–77.
Grossart H-P, Simon M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat Microb Ecol. 1998;15:127–40.
Grossart H-P, Hietanen S, Ploug H. Microbial dynamics on diatom aggregates in Øresund, Denmark. Mar Ecol Prog Ser. 2003;249:69–78.
Grossart H-P, Engel A, Arnosti C et al. Microbial dynamics in autotrophic and heterotrophic seawater mesocosms. III. Organic matter fluxes. Aquat Microb Ecol. 2007a;49:143–56.
Grossart H-P, Tang KW, Kiørboe T et al. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol Lett. 2007b;266:194–200. PubMed
Grossart H-P, Van den Wyngaert S, Kagami M et al. Fungi in aquatic ecosystems. Nat Rev Microbiol. 2019;17:339–54. PubMed
Hansell DA. Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci. 2013;5:421–45. PubMed
Heiskanen AS. Factors governing sedimentation and pelagic nutrient cycles in the northern Baltic Sea. Monogr Boreal Env Res. 1998;8:1–80.
HELCOM 2008 Helsinki Commission (HELCOM) . 2008. Programme for monitoring of eutrophication and its effects. Annex C-11 guidelines concerning bacterioplankton growth determination. In: Manual for Marine Monitoring in the COMBINE Programme of HELCOM. Annex C-1 : 9. Helsinki: HELCOM.
Heldal M, Norland S, Fagerbakke KM et al. The elemental composition of bacteria: a signature of growth conditions?. Mar Pollut Bull. 1996;33:3–9.
Hoppe HG. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser. 1983;11:299–308.
Hoppe HG. Microbial extracellular enzyme activity: a new key parameter in aquatic ecology. In: Chróst RJ (ed.), Microbial Enzymes in Aquatic Environments. Brock/Springer Series in Contemporary Bioscience. New York: Springer, 1991.
Hoppe HG. Phosphatase activity in the sea. Hydrobiology. 2003;493:187–200.
Hugerth LW, Larsson J, Alneberg J et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 2015;16:1–18. PubMed PMC
Inkscape Project . Inkscape. Version 1.3.1. 2020. https://inkscape.org/ (23 October 2023, date last accessed).
Ivančić I, Pfannkuchen M, Godrijan J et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog Oceanogr. 2016;146:175–86.
Jespersen AM, Christoffersen K. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol. 1987;109:445–54.
Karner M, Herndl GJ. Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Mar Biol. 1992;113:341–7.
Karner M, Rassoulzadegan F. Extracellular enzyme activity: indications for high short-term variability in a coastal marine ecosystem. Microb Ecol. 1995;30:143–56. PubMed
Kirchman DL, K´nees E, Hodson RE. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural systems. Appl Environ Microb. 1985;49:599–607. PubMed PMC
Kirchman DL. The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol. 1994;28:255–71. PubMed
Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100. PubMed
Klindworth A, Pruesse E, Schweer T et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. PubMed PMC
Koch MS, Kletou DC, Tursi R. Alkaline phosphatase activity of water column fractions and seagrass in a tropical carbonate estuary, Florida Bay. Estuar Coast Shelf Sci. 2009;83:403–13.
Koistinen J, Sjöblom M, Spilling K. Determining inorganic and organic phosphorus. In: Spilling K (ed.), Biofuels from Algae. New York: Human Press, 2017, 87–94.
Köster J, Rahmann S. Snakemake−a scalable bioinformatics workflow engine. Bioinformatics. 2012;28:2520–2. PubMed
Lapébie P, Lombard V, Drula E et al. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun. 2019;10:2043. PubMed PMC
Length R. emmeans: estimated Marginal Means, aka Least-squares Means. R package version 1.9.0. CRAN, 2023. https://CRAN.R-project.org/package=emmeans.
Lignell R, Hoikkala L, Lahtinen T. Effects of inorganic nutrients, glucose and solar radiation on bacterial growth and exploitation of dissolved organic carbon and nitrogen in the northern Baltic Sea. Aquat Microb Ecol. 2008;51:209–221.
Lilover M-J, Stips A. The variability of parameters controlling the cyanobacteria bloom biomass in the Baltic Sea. J Mar Syst. 2008;74:S108–15.
Lips I, Lips U. The importance of mesodinium rubrum at post-spring bloom nutrient and phytoplankton dynamics in the vertically stratified Baltic Sea. Front Mar Sci. 2017;4. 10.3389/fmars.2017.00407. DOI
Luo H, Benner R, Long RA et al. Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci. 2009;106:21219–23. PubMed PMC
Lyons MM, Dobbs FC. Differential utilization of carbon substrates by aggregate-associated and water-associated heterotrophic bacterial communities. Hydrobiologia. 2012;686:181–193.
Mahaffey C, Reynolds S, Davis CE et al. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments. Front Mar Sci. 2014;1. 10.3389/fmars.2014.00073. DOI
Malfatti F, Turk V, Tinta T et al. Microbial mechanisms coupling carbon and phosphorus cycles in phosphorus-limited northern Adriatic Sea. Sci Total Environ. 2014;470–471:1173–83. PubMed
Middelboe M, Sondergaard M, Letarte Y et al. Attached and free-living bacteria: production and polymer hydrolysis during a diatom bloom. Microb Ecol. 1995;29:231–48. PubMed
Mohit V, Archambault P, Toupoint N et al. Phylogenetic differences in attached and free-living bacterial communities in a temperate coastal lagoon during summer, revealed via high-throughput 16S rRNA gene sequencing. Appl Environ Microbiol. 2014;80:2071–83. PubMed PMC
Murray AE, Arnosti C, De La Rocha CL et al. Microbial dynamics in autotrophic and heterotrophic seawater mesocosms. II. Bacterioplankton community structure and hydrolytic enzyme activities. Aquat Microb Ecol. 2007;49:123–41.
Nausch M. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea). Aquat Microb Ecol. 1998;16:87–94. PubMed
Nausch M. Experimental evidence for interactions between bacterial peptidase and alkaline phosphatase activity in the Baltic Sea. Aquat Ecol. 2000;34:331–43.
Nausch M, Nausch G. Bacterial utilisation of phosphorus pools after nitrogen and carbon amendment and its relation to alkaline phosphatase activity. Aquat Microb Ecol. 2004;37:237–45.
Nausch M, Pollehne F, Kerstan E. Extracellular enzyme activities in relation to hydrodynamics in the Pomeranian Bight (southern Baltic Sea). Microb Ecol. 1998;36:251–8. PubMed
Nausch M, Achterberg EP, Bach LT et al. Concentrations and uptake of dissolved organic phosphorus compounds in the Baltic Sea. Front Mar Sci. 2018;5:386.
Nercessian O, Noyes E, Kalyuzhnaya MG et al. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol. 2005;71:6885–99. PubMed PMC
Niemi Å. Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Botanica Fennica. 1979;110:57–61.
Norland S. The relationship between biomass and volume of bacteria. In: Kemp PF, Cole JJ, Sherr BF, Sherr EB (eds.), Handbook of Methods in Aquatic Microbial Ecology. Boca Raton: CRC Press, 1993, 303–7.
Pinheiro J, Bates D, R Core Team . nlme: linear and nonlinear mixed effects models_. R package version 3.1-162. CRAN, 2023. https://CRAN.R-project.org/package=nlme.
Piwosz K, Salcher MM, Zeder M et al. Seasonal dynamics and activity of typical freshwater bacteria in brackish waters of the Gulf of Gdańsk. Limnol Oceanogr. 2013;58:817–26.
Ploug H, Grossart H-P. Bacterial growth and grazing on diatom aggregates: respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol Oceanogr. 2000;45:1467–75.
R Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2022.
Raateoja M, Kuosa H, Hällfors S. Fate of excess phosphorus in the Baltic Sea: a real driving force for cyanobacterial blooms?. J Sea Res. 2011;65:315–21.
Rahm L, Jönsson A, Wulff F. Nitrogen fixation in the Baltic proper: an empirical study. J Mar Syst. 2000;25:239–48.
Ramin KI, Allison SD. Bacterial tradeoffs in growth rate and extracellular enzymes. Front Microbiol. 2019;10. 10.3389/fmicb.2019.02956. PubMed DOI PMC
Redfield AC. The biological control of chemical factors in the environment. Am Sci. 1958;64:205–21. PubMed
Reintjes G, Heins A, Wang C et al. Abundance and composition of particles and their attached microbiomes along an Atlantic Meridional Transect. Front Mar Sci. 2023;10. 10.3389/fmars.2023.1051510. DOI
Rengefors K, Pettersson K, Blenckner T et al. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. J Plankton Res. 2001;23:435–43.
Rieck A, Herlemann DPR, Jürgens K et al. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front Microbiol. 2015;6. 10.3389/fmicb.2015.01297. PubMed DOI PMC
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Release of cell-free enzymes by marine pelagic fungal strains. Front Fungal Biol. 4;2023. 10.3389/ffunb.2023.1209265. PubMed DOI PMC
Salerno M, Stoecker DK. Ectocellular glucosidase and peptidase activity of the mixotrophic dinoflagellate Prorocentrum minimum (Dinophyceae). J Phycol. 2009;45:34–45. PubMed
Salonen K. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol Oceanogr. 1979;24:177–83.
Sharp JH, Peltzer ET, Alperin MJ et al. Measurement of dissolved organic carbon and nitrogen in natural waters: procedures subgroup report. Mar Chem. 1993;41:37–49.
Sherr BF, Sherr EB, Fallon RD. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987;53:958–65. PubMed PMC
Simon M, Azam F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser. 1989;51:201–13.
Simon M, Grossart H-P, Schweitzer B et al. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 2002;28:175–211.
Smith DC, Azam F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs. 1992;6:107–14.
Smith DC, Simon M, Alldredge AL et al. Intense hydrolytic enzyme activity on marine aggregates and implication for rapid particle dissolution. Nature. 1992;359:139–41.
Solórzano L, Sharp JH. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr. 1980;25:754–8.
Spilling K, Olli K, Lehtoranta J et al. Shifting diatom–dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Front Mar Sci. 2018;5. 10.3389/fmars.2018.00327. DOI
Spilling K, Piiparinen J, Achterberg EP et al. Extracellular enzyme activity in the coastal upwelling system off Peru: a mesocosm experiment. Biogeosciences. 2023;20:1605–19.
Spilling K, Vanharanta M, Santoro M et al. Effects of excess phosphate on a coastal plankton community. Biorxiv. 2024. 10.1101/2024.02.05.576994. DOI
Steen AD, Arnosti C. Long lifetimes of β-glucosidase, leucine aminopeptidase, and phosphatase in Arctic seawater. Mar Chem. 2011;123:127–32.
Steinberg DK, van Mooy BAS, Buesseler KO et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnol Oceanogr. 2008;253:1327–38.
Strojsová E, Vrba J, Nedoma J et al. Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol. 2003;38:295–306.
Tada Y, Grossart H-P. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method. ISME J. 2014;8:441–54. PubMed PMC
Tamelander T, Heiskanen AS. Effects of spring bloom phytoplankton dynamics and hydrography on the composition of settling material in the coastal northern Baltic Sea. J Mar Syst. 2004;52:217–34.
Thingstad TF, Bellerby RGJ, Bratbak G et al. Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature. 2008;455:387–90. PubMed
Thomson B, Wenley J, Currie K et al. Resolving the paradox: continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Mar Chem. 2019;214:103671.
Traving SJ, Balmonte JP, Seale D et al. On single-cell enzyme assays in marine microbial ecology and biogeochemistry. Front Mar Sci Sec Aquat Microbiol. 2022;9. 10.3389/fmars.2022.846656. DOI
Traving SJ, Thygesen UH, Riemann L et al. A model of extracellular enzymes in free-living microbes: which strategy pays off?. Appl Environ Microb. 2015;81:7385–93. PubMed PMC
Vadstein O, Olsen LM, Busch A et al. Is phosphorus limitation of lanktonic heterotrophic bacteria and accumulation of degradable DOC a normal phenomenon in phosphorus-limited systems? A microcosm study. FEMS Microbiol Ecol. 2003;46:307–16. PubMed
Vahtera E, Conley DJ, Gustafsson BG et al. Internal ecosystem feedback enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio. 2007;36:186–94. PubMed
Vanharanta M, Spilling K. The uptake of excess phosphate at low inorganic N:P ratio in a coastal sea afflicted with eutrophication. Mar Ecol Prog Ser. 2023;718:23–37.
Vanharanta M, Santoro M, Villena-Alemany C et al. Effect of decreasing inorganic N:P ratio on the plankton community—INN:PP. PANGAEA. 2024. 10.1594/PANGAEA.966040. DOI
Villalba LA, Karnatak R, Grossart H-P et al. Flexible habitat choice of pelagic bacteria increases system stability and energy flow through the microbial loop. Limnol Oceanogr. 2022;67:1402–15.
Villena-Alemany C, Mujakić I, Fecskeová LK et al. Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters. Microbiome. 2024;12:65. PubMed PMC
Wickham H. GGplot2: Elegant Graphics for Data Analysis. New York: Springer, 2016.
Ylla I, Romaní AM, Sabater S. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature. Microb Ecol. 2012;64:593–604. PubMed
Zhao L, Brugel S, Ramasamy KP et al. Bacterial community responses to planktonic and terrestrial substrates in coastal northern Baltic Sea. Front Mar Sci. 2023;10. 10.3389/fmars.2023.1130855. DOI
Ziervogel K, Arnosti C. Polysaccharide hydrolysis in aggregates and free enzyme activity in aggregate-free seawater from the north-eastern Gulf of Mexico. Environ Microbiol. 2008;10:289–99. PubMed
Ziervogel K, Steen AD, Arnosti C. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation. Biogeosciences. 2010;7:1007–15.