Right ventricular-pulmonary arterial coupling and pulmonary hypertension in hemodialysis: insights into structural cardiac changes and clinical implications
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39988812
PubMed Central
PMC11852216
DOI
10.1080/0886022x.2025.2466822
Knihovny.cz E-zdroje
- Klíčová slova
- Right ventricular-pulmonary arterial coupling, arteriovenous access flow, chronic hemodialysis, fluid overload, heart failure, pulmonary hypertension,
- MeSH
- arteria pulmonalis * patofyziologie diagnostické zobrazování MeSH
- chronické selhání ledvin * terapie komplikace MeSH
- dialýza ledvin * škodlivé účinky MeSH
- echokardiografie MeSH
- lidé středního věku MeSH
- lidé MeSH
- plicní hypertenze * patofyziologie epidemiologie etiologie MeSH
- prevalence MeSH
- průřezové studie MeSH
- senioři MeSH
- srdeční komory * patofyziologie diagnostické zobrazování MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
OBJECTIVES: This cross-sectional analysis from the CZecking Heart Failure in patients with advanced Chronic Kidney Disease trial (ISRCTN18275480) examined pulmonary hypertension and right ventricular-pulmonary arterial coupling in patients on chronic hemodialysis. The aims of this analysis were: 1. To analyze relations between pulmonary hypertension and right ventricular-pulmonary arterial coupling with dialysis access flow and current hydration; 2. To analyze structural heart changes associated with right ventricular-pulmonary arterial uncoupling; 3. To reveal the prevalence, etiology and severity of pulmonary hypertension in the Czech hemodialysis population. METHODS: We performed expert echocardiography, vascular access flow measurements, bioimpedance analysis, and laboratory testing in 336 hemodialysis patients. RESULTS: Pulmonary hypertension was present in 34% (114/336) patients and right ventricular-pulmonary arterial uncoupling was present in 25% of patients with pulmonary hypertension. Only weak associations between the flow of the dialysis arteriovenous access and estimated pulmonary arterial systolic pressure and right ventricular-pulmonary arterial coupling was proved. There was a strong association between hydration status assessed by estimated central venous pressure with pulmonary arterial systolic pressure (Rho 0.6, p < 0.0001) and right ventricular-pulmonary arterial coupling (Rho -0.52, p < 0.0001) and association between overhydration to extracellular water ratio with pulmonary arterial systolic pressure (Rho 0.31, p = 0.0001) and right ventricular-pulmonary arterial coupling (Rho -0.29, p = 0.002). The prevalence of heart failure was significantly higher in patients with right ventricular-pulmonary arterial uncoupling (88% vs. 52%, p = 0.0003). CONCLUSION: These findings suggest that optimizing volume status and treating heart failure should be prioritized in hemodialysis patients to prevent pulmonary hypertension progression and right ventricular-pulmonary arterial uncoupling.
Dialysis Center Cerny Most B Braun Avitum Prague Czechia
Zobrazit více v PubMed
Lv JC, Zhang LX.. Prevalence and disease burden of chronic kidney disease. Adv Exp Med Biol. 2019;1165:3–15. doi: 10.1007/978-981-13-8871-2_1. PubMed DOI
Gusev E, et al. The pathogenesis of end-stage renal disease from the standpoint of the theory of general pathological processes of inflammation. Int J Mol Sci. 2021;22(21):11453. PubMed PMC
Msaad R, Essadik R, Mohtadi K, et al. Predictors of mortality in hemodialysis patients. Pan Afr Med J. 2019;33:61. doi: 10.11604/pamj.2019.33.61.18083. PubMed DOI PMC
Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2023;61(1):2200879. doi: 10.1183/13993003.00879-2022. PubMed DOI
Malik J, Valerianova A, Tuka V, et al. The effect of high-flow arteriovenous fistulas on systemic haemodynamics and brain oxygenation. ESC Heart Fail. 2021;8(3):2165–2171. doi: 10.1002/ehf2.13305. PubMed DOI PMC
Yigla M, Nakhoul F, Sabag A, et al. Pulmonary hypertension in patients with end-stage renal disease. Chest. 2003;123(5):1577–1582. doi: 10.1378/chest.123.5.1577. PubMed DOI
Block GA, Hulbert-Shearon TE, Levin NW, et al. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31(4):607–617. doi: 10.1053/ajkd.1998.v31.pm9531176. PubMed DOI
Floege J, Kim J, Ireland E, et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant. 2011;26(6):1948–1955. doi: 10.1093/ndt/gfq219. PubMed DOI PMC
Nakhoul F, Yigla M, Gilman R, et al. The pathogenesis of pulmonary hypertension in haemodialysis patients via arterio-venous access. Nephrol Dial Transplant. 2005;20(8):1686–1692. doi: 10.1093/ndt/gfh840. PubMed DOI
Saleh MA, El Kilany WM, Keddis VW, et al. Effect of high flow arteriovenous fistula on cardiac function in hemodialysis patients. Egypt Heart J. 2018;70(4):337–341. doi: 10.1016/j.ehj.2018.10.007. PubMed DOI PMC
Sequeira A, Tan TW.. Complications of a high-flow access and its management. Semin Dial. 2015;28(5):533–543. doi: 10.1111/sdi.12366. PubMed DOI
Malik J, Valerianova A, Pesickova SS, et al. CZecking heart failure in patients with advanced chronic kidney disease (Czech HF-CKD): study protocol. J Vasc Access. 2024;25(1):294–302. doi: 10.1177/11297298221099843. PubMed DOI
Malik J, Valerianova A, Pesickova SS, et al. Heart failure with preserved ejection fraction is the most frequent but commonly overlooked phenotype in patients on chronic hemodialysis. Front Cardiovasc Med. 2023;10:1130618. doi: 10.3389/fcvm.2023.1130618. PubMed DOI PMC
Houston BA, Brittain EL, Tedford RJ.. Right ventricular failure. N Engl J Med. 2023;388(12):1111–1125. doi: 10.1056/NEJMra2207410. PubMed DOI
Fourie PR, Coetzee AR, Bolliger CT.. Pulmonary artery compliance: its role in right ventricular-arterial coupling. Cardiovasc Res. 1992;26(9):839–844. doi: 10.1093/cvr/26.9.839. PubMed DOI
He Q, Lin Y, Zhu Y, et al. Clinical usefulness of right ventricle-pulmonary artery coupling in cardiovascular disease. J Clin Med. 2023;12(7):2526. doi: 10.3390/jcm12072526. PubMed DOI PMC
Srdanović I, Stefanović M, Milovančev A, et al. Relevance of the TAS’/PASP ratio as a predictor of outcomes in patients with heart failure with a reduced ejection fraction. Life (Basel). 2024;14(7). doi: 10.3390/life14070863. PubMed DOI PMC
Inciardi RM, Abanda M, Shah AM, et al. Right ventricular function and pulmonary coupling in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2023;82(6):489–499. doi: 10.1016/j.jacc.2023.05.010. PubMed DOI PMC
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Kircher BJ, Himelman RB, Schiller NB.. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66(4):493–496. doi: 10.1016/0002-9149(90)90711-9. PubMed DOI
Agarwal R. Prevalence, determinants and prognosis of pulmonary hypertension among hemodialysis patients. Nephrol Dial Transplant. 2012;27(10):3908–3914. doi: 10.1093/ndt/gfr661. PubMed DOI PMC
Bolignano D, Rastelli S, Agarwal R, et al. Pulmonary hypertension in CKD. Am J Kidney Dis. 2013;61(4):612–622. doi: 10.1053/j.ajkd.2012.07.029. PubMed DOI
McQuillan BM, Picard MH, Leavitt M, et al. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 2001;104(23):2797–2802. doi: 10.1161/hc4801.100076. PubMed DOI
Galiè N, Humbert M, Vachiery J-L, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Rev Esp Cardiol (Engl Ed). 2016;69(2):177. doi: 10.1016/j.rec.2016.01.002. PubMed DOI
Anastasiou V, Papazoglou AS, Moysidis DV, et al. The prognostic impact of right ventricular-pulmonary arterial coupling in heart failure: a systematic review and meta-analysis. Heart Fail Rev. 2024;29(1):13–26. doi: 10.1007/s10741-023-10341-2. PubMed DOI PMC
Kudlicka J, Kavan J, Tuka V, et al. More precise diagnosis of access stenosis: ultrasonography versus angiography. J Vasc Access. 2012;13(3):310–314. doi: 10.5301/jva.5000047. PubMed DOI
Vega A, Abad S, Macías N, et al. Any grade of relative overhydration is associated with long-term mortality in patients with Stages 4 and 5 non-dialysis chronic kidney disease. Clin Kidney J. 2018;11(3):372–376. doi: 10.1093/ckj/sfy018. PubMed DOI PMC
Havlucu Y, Kursat S, Ekmekci C, et al. Pulmonary hypertension in patients with chronic renal failure. Respiration. 2007;74(5):503–510. doi: 10.1159/000102953. PubMed DOI
Valerianova A, Mlcek M, Grus T, et al. New porcine model of arteriovenous fistula documents increased coronary blood flow at the cost of brain perfusion. Front Physiol. 2022;13:881658. doi: 10.3389/fphys.2022.881658. PubMed DOI PMC
Huang X-M, Yu F, Wang Y, et al. Effect of proximal artery restriction on flow reduction and cardiac function in hemodialysis patients with high-flow arteriovenous fistulas. J Vasc Surg. 2023;78(2):526–533. doi: 10.1016/j.jvs.2023.04.017. PubMed DOI
Zoccali C, Moissl U, Chazot C, et al. Chronic fluid overload and mortality in ESRD. J Am Soc Nephrol. 2017;28(8):2491–2497. doi: 10.1681/ASN.2016121341. PubMed DOI PMC
Yılmaz S, Yildirim Y, Yilmaz Z, et al. Pulmonary function in patients with end-stage renal disease: effects of hemodialysis and fluid overload. Med Sci Monit. 2016;22:2779–2784. doi: 10.12659/msm.897480. PubMed DOI PMC
Ortwein J, Feustel A, Reichenberger F.. Prevalence of pulmonary hypertension in dialysis patients with end-stage renal disease. Pneumologie. 2020;74(4):210–216. doi: 10.1055/a-1069-0691. PubMed DOI
Alhwiesh AK, Abdul-Rahman IS, Alshehri A, et al. The problem of pulmonary arterial hypertension in end-stage renal disease: can peritoneal dialysis be the solution. BMC Nephrol. 2022;23(1):386. doi: 10.1186/s12882-022-02998-y. PubMed DOI PMC
Ramasubbu K, et al. A prospective echocardiographic evaluation of pulmonary hypertension in chronic hemodialysis patients in the United States: prevalence and clinical significance. Int J Gen Med. 2010;3:279–286. PubMed PMC
Warner ED, Corsi DR, Jimenez D, et al. Determinants of pulmonary hypertension in patients with end-stage kidney disease and arteriovenous access. Curr Probl Cardiol. 2024;49(4):102406. doi: 10.1016/j.cpcardiol.2024.102406. PubMed DOI
Mukhtar KN, Mohkumuddin S, Mahmood SN.. Frequency of pulmonary hypertension in hemodialysis patients. Pak J Med Sci. 2014;30(6):1319–1322. doi: 10.12669/pjms.306.5525. PubMed DOI PMC
Fabbian F, Cantelli S, Molino C, et al. Pulmonary hypertension in dialysis patients: a cross-sectional Italian study. Int J Nephrol. 2010;2011:283475. doi: 10.4061/2011/283475. PubMed DOI PMC
Nakagawa Y, Nishikimi T, Kuwahara K.. Atrial and brain natriuretic peptides: hormones secreted from the heart. Peptides. 2019;111:18–25. doi: 10.1016/j.peptides.2018.05.012. PubMed DOI
Wang L, Xu X, Zhang M, et al. Prevalence of Chronic Kidney Disease in China: results From the Sixth China chronic disease and risk factor surveillance. JAMA Intern Med. 2023;183(4):298–310. doi: 10.1001/jamainternmed.2022.6817. PubMed DOI PMC
Song L, Quan Z-L, Zhao L-Y, et al. Impact of pulmonary hypertension on arteriovenous fistula failure of hemodialysis patients: a 10 years follow-up cohort study. J Vasc Access. 2023;24(2):261–270. doi: 10.1177/11297298211027408. PubMed DOI