Characterization of insulin crystalline form in isolated β-cell secretory granules
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/R009066/1
Medical Research Council - United Kingdom
PubMed
36541100
PubMed Central
PMC9768635
DOI
10.1098/rsob.220322
Knihovny.cz E-zdroje
- Klíčová slova
- crystallization in vivo, electron microscopy, insulin secretion, peptide hormone, secretory granules, subcellular vesicle,
- MeSH
- beta-buňky * MeSH
- elektronová mikroskopie MeSH
- inzulin MeSH
- Langerhansovy ostrůvky * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inzulin MeSH
Insulin is stored in vivo inside the pancreatic β-cell insulin secretory granules. In vitro studies have led to an assumption that high insulin and Zn2+ concentrations inside the pancreatic β-cell insulin secretory granules should promote insulin crystalline state in the form of Zn2+-stabilized hexamers. Electron microscopic images of thin sections of the pancreatic β-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals. However, the structural features of the storage forms of insulin in native preparations of secretory granules are unknown, because of their small size, fragile character and difficult handling. We isolated and investigated the secretory granules from MIN6 cells under near-native conditions, using cryo-electron microscopic (Cryo-EM) techniques. The analysis of these data from multiple intra-granular crystals revealed two different rhomboidal crystal lattices. The minor lattice has unit cell parameters (a ≃ b ≃ 84.0 Å, c ≃ 35.2 Å), similar to in vitro crystallized human 4Zn2+-insulin hexamer, whereas the largely prevalent unit cell has more than double c-axis (a ≃ b ≃ c ≃ 96.5 Å) that probably corresponds to two or three insulin hexamers in the asymmetric unit. Our experimental data show that insulin can be present in pancreatic MIN6 cell granules in a microcrystalline form, probably consisting of 4Zn2+-hexamers of this hormone.
Zobrazit více v PubMed
Orci L, Ravazzola M, Amherdt M, Madsen O, Vassalli JD, Perrelet A. 1985. Direct identification of prohormone conversion site in insulin-secreting cells. Cell 42, 671-681. (10.1016/0092-8674(85)90124-2) PubMed DOI
Dodson G, Steiner D. 1998. The role of assembly in insulin's biosynthesis. Curr. Opin. Struct. Biol. 8, 189-194. (10.1016/s0959-440x(98)80037-7) PubMed DOI
Steiner DF, Park SY, Stoy J, Philipson LH, Bell GI. 2009. A brief perspective on insulin production. Diabetes Obes. Metab. 11, 189-196. (10.1111/j.1463-1326.2009.01106.x) PubMed DOI
Foster MC, Leapman RD, Li MX, Atwater I. 1993. Elemental composition of secretory granules in pancreatic-islets of Langerhans. Biophys. J. 64, 525-532. (10.1016/S0006-3495(93)81397-3) PubMed DOI PMC
Emdin SO, Dodson GG, Cutfield JM, Cutfield SM. 1980. Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 19, 174-182. (10.1007/BF00275265) PubMed DOI
Weiss MA. 2009. The structure and function of insulin: decoding the TR transition. In Vitamins and hormones. Insulin and IGFs (ed. Litwack G), pp. 33-49. London, UK: Elsevier. PubMed PMC
Greider MH, Howell SL, Lacy PE. 1969. Isolation and properties of secretory granules from rat islets of Langerhans. II. Ultrastructure of the beta granule. J. Cell Biol. 41, 162-166. (10.1083/jcb.41.1.162) PubMed DOI PMC
Dodson EJ, Dodson GG, Hodgkin DC, Reynolds CD. 1979. Structural relationships in the two-zinc insulin hexamer. Can. J. Biochem. 57, 469-479. (10.1139/o79-060) PubMed DOI
Michael J, Carroll R, Swift HH, Steiner DF. 1987. Studies on the molecular organization of rat insulin secretory granules. J. Biol. Chem. 262, 16 531-16 535. PubMed
Adams MJ, et al. 1969. Structure of rhombohedral 2 Zinc insulin crystals. Nature 224, 491-495. (10.1038/224491a0) DOI
Kosinova L, et al. 2014. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 53, 3392-3402. (10.1021/Bi500073z) PubMed DOI PMC
Smith GD, Dodson GG. 1992. The structure of a rhombohedral R6 insulin hexamer that binds phenol. Biopolymers 32, 441-445. (10.1002/bip.360320422) PubMed DOI
Whittingham JL, Chaudhuri S, Dodson EJ, Moody PC, Dodson GG. 1995. X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben, and phenol. Biochemistry 34, 15 553-15 563. (10.1021/bi00047a022) PubMed DOI
Smith GD, Ciszak E, Pangborn W. 1996. A novel complex of a phenolic derivative with insulin: structural features related to the T–>R transition. Protein Sci. 5, 1502-1511. (10.1002/pro.5560050806) PubMed DOI PMC
Brzovic PS, Choi WE, Borchardt D, Kaarsholm NC, Dunn MF. 1994. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer. Biochemistry 23, 13 057-13 069. (10.1021/bi00248a015) PubMed DOI
Smith GD, Dodson GG. 1992. Structure of a rhombohedral R6 insulin/phenol complex. Proteins 14, 401-408. (10.1002/prot.340140309) PubMed DOI
Palivec V, et al. 2017. Computational and structural evidence for neurotransmitter-mediated modulation of the oligomeric states of human insulin in storage granules. J. Biol. Chem. 292, 8342-8355. (10.1074/jbc.M117.775924) PubMed DOI PMC
Brezina K, Duboue-Dijon E, Palivec V, Jiracek J, Krizek T, Viola CM, Ganderton TR, Brzozowski AM, Jungwirth P. 2018. Can arginine inhibit insulin aggregation? A combined protein crystallography, capillary electrophoresis, and molecular simulation study. J. Phys. Chem. B 122, 10 069-10 076. (10.1021/acs.jpcb.8b06557) PubMed DOI
Falck B, Hellman B. 1963. Evidence for the presence of biogenic amines in pancreatic islets. Experientia 19, 139-140. (10.1007/BF02171596) DOI
Ericson LE, Hakanson R, Lundquist I. 1977. Accumulation of dopamine in mouse pancreatic B-cells following injection of L-DOPA. Localization to secretory granules and inhibition of insulin secretion. Diabetologia 13, 117-124. (10.1007/BF00745138) PubMed DOI
Lundquist I, Ekholm R, Ericson LE. 1971. Monoamines in the pancreatic islets of the mouse. 5-Hydroxytryptamine as an intracellular modifier of insulin secretion, and the hypoglycaemic action of monoamine oxidase inhibitors. Diabetologia 7, 414-422. (10.1007/BF01212056) PubMed DOI
Davidson HW. 2004. (Pro)Insulin processing: a historical perspective. Cell Biochem. Biophys. 40, 143-158. (10.1385/cbb:40:3:143) PubMed DOI
Lisi GP, Png CYM, Wilcox DE. 2014. Thermodynamic contributions to the stability of the insulin hexamer. Biochemistry 53, 3576-3584. (10.1021/bi401678n) PubMed DOI
Hassiepen U, Federwisch M, Mulders T, Wollmer A. 1999. The lifetime of insulin hexamers. Biophys. J. 77, 1638-1654. (10.1016/S0006-3495(99)77012-8) PubMed DOI PMC
Charcot JM, Robin C. 1853. Observation of leukocytosis. C. R. Mem. Soc. Biol. 5, 450-454.
Hartig T. 1855. About the gluten flour. Bot. Zeitung 13, 881.
Doye JP, Louis AA, Vendruscolo M. 2004. Inhibition of protein crystallization by evolutionary negative design. Phys. Biol. 1, P9-P13. (10.1088/1478-3967/1/1/P02) PubMed DOI
Schonherr R, Rudolph JM, Redecke L. 2018. Protein crystallization in living cells. Biol. Chem. 399, 751-772. (10.1515/hsz-2018-0158) PubMed DOI
Dogan S, Barnes L, Cruz-Vetrano WP. 2012. Crystal-storing histiocytosis: report of a case, review of the literature (80 cases) and a proposed classification. Head Neck Pathol. 6, 111-120. (10.1007/s12105-011-0326-3) PubMed DOI PMC
Pande A, Pande J, Asherie N, Lomakin A, Ogun O, King J, Benedek GB. 2001. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc. Natl Acad. Sci. USA 98, 6116-6120. (10.1073/pnas.101124798) PubMed DOI PMC
Lawrence C, Fabry ME, Nagel RL. 1991. The unique red cell heterogeneity of SC disease: crystal formation, dense reticulocytes, and unusual morphology. Blood 78, 2104-2112. PubMed
Ackerman SJ, Liu L, Kwatia MA, Savage MP, Leonidas DD, Swaminathan GJ, Acharya KR. 2002. Charcot-Leyden crystal protein (galectin-10) is not a dual function galectin with lysophospholipase activity but binds a lysophospholipase inhibitor in a novel structural fashion. J. Biol. Chem. 277, 14 859-14 868. (10.1074/jbc.M200221200) PubMed DOI
Reinke F. 1896. Contributions to the human histology. I. About the formation of crystalloids in interstitial cells of the human testis. Arch. Mikrosk. Anat. 47, 34-44.
Planinic A, Maric T, Bojanac AK, Jezek D. 2022. Reinke crystals: hallmarks of adult Leydig cells in humans. Andrology 10, 1107-1120. (10.1111/andr.13201) PubMed DOI
Jain M, Aiyer HM, Bajaj P, Dhar S. 2001. Intracytoplasmic and intranuclear Reinke's crystals in a testicular Leydig-cell tumor diagnosed by fine-needle aspiration cytology: a case report with review of the literature. Diagn. Cytopathol. 25, 162-164. (10.1002/dc.2029) PubMed DOI
Smeitink J, Stadhouders A, Sengers R, Ruitenbeek W, Wevers R, ter Laak H, Trijbels F. 1992. Mitochondrial creatine kinase containing crystals, creatine content and mitochondrial creatine kinase activity in chronic progressive external ophthalmoplegia. Neuromuscul. Disord. 2, 35-40. (10.1016/0960-8966(92)90024-z) PubMed DOI
Lange RH. 1973. Histochemistry of the Islets of Langerhans. Stuttgart, Germany: Gustav Fischer Verlag.
Lange RH. 1971. Crystalline B-granules: rhombic dodecaheders (a = 7.4 nm?). Diabetologia 7, 465-466. (10.1007/BF01212065) PubMed DOI
Lange RH, Boseck S, Ali SS. 1972. Kristallographische Interpretation der Feinstruktur der B-granula in der Langerhansschen Inseln der Ringelnatter, Natrix n. natrix (L.). Z. Zellforsch. 131, 559-570. PubMed
Lange RH. 1974. Crystalline islet B-granules in the grass snake (Natrix natrix (L.)): tilting experiments in the electron microscope. J. Ultrastruct. Res. 46, 301-307. (10.1016/s0022-5320(74)80064-x) PubMed DOI
Raška I, Komrska J, Titlbach M, Rieder M. 1978. Fine structure of crystalline inclusions in B-cells of the islets of Langerhans in the alligator. Cell Tissue Res. 187, 535-550. (10.1007/BF00229618) PubMed DOI
Fullerton WW, Potter R, Low BW. 1970. Proinsulin: crystallization and preliminary X-ray diffraction studies. Proc. Natl Acad. Sci. USA 66, 1213-1219. (10.1073/pnas.66.4.1213) PubMed DOI PMC
Dzianova P, et al. 2020. The efficiency of insulin production and its content in insulin-expressing model beta-cells correlate with their Zn2+ levels. Open Biol. 10, 200137. (10.1098/rsob.200137) PubMed DOI PMC
Gaisano HY, Macdonald PE, Vranic M. 2012. Glucagon secretion and signaling in the development of diabetes. Front. Physiol. 3, 349. (10.3389/fphys.2012.00349) PubMed DOI PMC
Asai S, Zakova L, Selicharova I, Jiracek J. 2021. A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. Anal. Bioanal. Chem. 413, 4531-4543. (10.1007/s00216-021-03423-3) PubMed DOI
Brunner Y, Coute Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF, Wollheim CB, Sanchez JC. 2007. Proteomics analysis of insulin secretory granules. Mol. Cell. Proteom. 6, 1007-1017. (10.1074/mcp.M600443-MCP200) PubMed DOI
Schvartz D, Brunner Y, Coute Y, Foti M, Wollheim CB, Sanchez JC. 2012. Improved characterization of the insulin secretory granule proteomes. J. Proteom. 75, 4620-4631. (10.1016/j.jprot.2012.04.023) PubMed DOI
Smith GD, Swenson DC, Dodson EJ, Dodson GG, Reynolds CD. 1984. Structural stability in the 4-zinc human insulin hexamer. Proc. Natl Acad. Sci. USA 81, 7093-7097. (10.1073/pnas.81.22.7093) PubMed DOI PMC
Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33, 491-497. (10.1016/0022-2836(68)90205-2) PubMed DOI
Howell SL. 1984. The mechanism of insulin-secretion. Diabetologia 26, 319-327. (10.1007/BF00266030) PubMed DOI
Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V. 1980. Continuous, clonal, insulin-secreting and somatostatin-secreting cell-lines established from a transplantable rat islet cell tumor. Proc. Natl Acad. Sci. USA 77, 3519-3523. (10.1073/pnas.77.6.3519) PubMed DOI PMC
McClenaghan NH, Elsner M, Tiedge M, Lenzen S. 1998. Molecular characterization of the glucose-sensing mechanism in the clonal insulin-secreting BRIN-BD11 cell line. Biochem. Biophys. Res. Commun. 242, 262-266. (10.1006/bbrc.1997.7947) PubMed DOI
Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. 2004. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145, 667-678. (10.1210/en.2003-1099) PubMed DOI
Asfari M, Janjic D, Meda P, Li GD, Halban PA, Wollheim CB. 1992. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130, 167-178. (10.1210/en.130.1.167) PubMed DOI
Miyazaki JI, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura KI. 1990. Establishment of a pancreatic β cell line that retains glucose-inducible insulin-secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127, 126-132. (10.1210/endo-127-1-126) PubMed DOI
Asai S, Moravcová J, Žáková L, Selicharová I, Hadravová R, Brzozowski AM, Nováček J, Jiráček J. 2022. Characterisation of insulin crystalline form in isolated β-cell secretory granules. Figshare. (10.6084/m9.figshare.c.6328877) PubMed DOI PMC