Stress response of Escherichia coli to essential oil components - insights on low-molecular-weight proteins from MALDI-TOF
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30158663
PubMed Central
PMC6115441
DOI
10.1038/s41598-018-31255-2
PII: 10.1038/s41598-018-31255-2
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky metabolismus MeSH
- Escherichia coli účinky léků fyziologie MeSH
- fyziologický stres * MeSH
- molekulová hmotnost MeSH
- oleje prchavé metabolismus MeSH
- proteiny z Escherichia coli analýza chemie MeSH
- proteom analýza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- oleje prchavé MeSH
- proteiny z Escherichia coli MeSH
- proteom MeSH
The antibacterial effects of essential oils and their components (EOCs) are usually attributed to effects on membranes and metabolism. Studies of the effects of EOCs on protein expression have primarily analysed proteins larger than 10 kDa using gel electrophoresis. In the present study, we used MALDI-TOF-MS to investigate the effects of EOCs on low-molecular-weight proteins. From 297 m/z features, we identified 94 proteins with important differences in expression among untreated samples, samples treated with EOCs, and samples treated with antibiotics, peroxide, or chlorine. The targets of these treatments obviously differ, even among EOCs. In addition to ribosomal proteins, stress-, membrane- and biofilm-related proteins were affected. These findings may provide a basis for identifying new targets of essential oils and synergies with other antibiotics.
Zobrazit více v PubMed
Vergis J, Gokulakrishnan P, Agarwal RK, Kumar A. Essential Oils as Natural Food Antimicrobial Agents: A Review. Crit. Rev. Food Sci. Nutr. 2015;55:1320–1323. doi: 10.1080/10408398.2012.692127. PubMed DOI
Calo JR, Crandall PG, O’Bryan CA, Ricke SC. Essential Oils as Antimicrobials in Food Systems– A Review. Food Control. 2015;54:111–119. doi: 10.1016/j.foodcont.2014.12.040. DOI
Frankova A, et al. The Antifungal Activity of Essential Oils in Combination with Warm air Flow Against Postharvest Phytopathogenic Fungi in Apples. Food Control. 2016;68:62–68. doi: 10.1016/j.foodcont.2016.03.024. DOI
Božik M, et al. Selected Essential Oil Vapours Inhibit Growth of Aspergillus spp. In Oats with Improved Consumer Acceptability. Ind. Crops Prod. 2017;98:146–152. doi: 10.1016/j.indcrop.2016.11.044. DOI
Burt S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods - a Review. Int. J. Food Microbiol. 2004;94:223–53. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Shaaban HAE, El-Ghorab AH, Shibamoto T. Bioactivity of Essential Oils and their Volatile Aroma Components: Review. J. Essent. Oil Res. 2012;24:203–212. doi: 10.1080/10412905.2012.659528. DOI
Nedorostova L, et al. Antibacterial Effect of Essential Oil Vapours Against Different Strains of Staphylococcus aureus, Including MRSA. Flavour Fragr. J. 2011;26:403–407. doi: 10.1002/ffj.2068. DOI
Seow YX, Yeo CR, Chung HL, Yuk H-G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014;54:625–644. doi: 10.1080/10408398.2011.599504. PubMed DOI
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils–a review. Food Chem. Toxicol. 2008;46:446–75. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
Langeveld WT, Veldhuizen EJA, Burt SA. Synergy Between Essential Oil Components and Antibiotics: A Review. Crit. Rev. Microbiol. 2014;40:76–94. doi: 10.3109/1040841X.2013.763219. PubMed DOI
Lopez-Romero JC, González-Ríos H, Borges A, Simões M. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complement. Altern. Med. 2015;2015:1–9. PubMed PMC
Hyldgaard M, Mygind T, Meyer RL. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012;3:12. doi: 10.3389/fmicb.2012.00012. PubMed DOI PMC
Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Pharmaceuticals (Basel) 2013. Effect of Essential Oils on Pathogenic Bacteria; pp. 1451–74. PubMed PMC
Siroli L, Patrignani F, Gardini F, Lanciotti R. Effects of Sub-Lethal Concentrations of Thyme and Oregano Essential Oils, Carvacrol, Thymol, Citral and Trans-2-Hexenal on Membrane Fatty Acid Composition and Volatile Molecule Profile of Listeria Monocytogenes, Escherichia coli and Salmonella Enteritidis. Food Chem. 2015;182:185–92. doi: 10.1016/j.foodchem.2015.02.136. PubMed DOI
Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in Membrane Fatty Acids Composition of Microbial Cells Induced by Addiction of Thymol, Carvacrol, Limonene, Cinnamaldehyde, and Eugenol in the Growing Media. J. Agric. Food Chem. 2006;54:2745–2749. doi: 10.1021/jf052722l. PubMed DOI
Becerril R, Nerín C, Gómez-Lus R. Evaluation of Bacterial Resistance to Essential Oils and Antibiotics After Exposure to Oregano and Cinnamon Essential Oils. Foodborne Pathog. Dis. 2012;9:699–705. doi: 10.1089/fpd.2011.1097. PubMed DOI
Bandow JE, Brotz H, Leichert LIO, Labischinski H, Hecker M. Proteomic Approach to Understanding Antibiotic Action. Antimicrob. Agents Chemother. 2003;47:948–955. doi: 10.1128/AAC.47.3.948-955.2003. PubMed DOI PMC
Fadli M, Chevalier J, Hassani L, Mezrioui NE, Pagès JM. Natural Extracts Stimulate Membraneassociated Mechanisms of Resistance in Gram-Negative Bacteria. Lett. Appl. Microbiol. 2014;58:472–477. doi: 10.1111/lam.12216. PubMed DOI
Brötz-Oesterhelt H, Bandow JE, Labischinski H. Bacterial Proteomics and Its Role in Antibacterial Drug Discovery. Mass Spectrom. Rev. 2005;24:549–565. doi: 10.1002/mas.20030. PubMed DOI
Lahmar A, et al. Reversal of Resistance in Bacteria Underlies Synergistic Effect of Essential Oils with Conventional Antibiotics. Microb. Pathog. 2017;106:50–59. doi: 10.1016/j.micpath.2016.10.018. PubMed DOI
Herman A, Tambor K, Herman A. Linalool Affects the Antimicrobial Efficacy of Essential Oils. Curr. Microbiol. 2016;72:165–172. doi: 10.1007/s00284-015-0933-4. PubMed DOI
Rather MA, Bhat BA, Qurishi MA. Multicomponent Phytotherapeutic Approach Gaining Momentum: Is the “One Drug to Fit all” Model Breaking Down? Phytomedicine. 2013;21:1–14. doi: 10.1016/j.phymed.2013.07.015. PubMed DOI
Burt SA, et al. Carvacrol Induces Heat Shock Protein 60 and Inhibits Synthesis of Flagellin in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007;73:4484–90. doi: 10.1128/AEM.00340-07. PubMed DOI PMC
Joshi JR, Burdman S, Lipsky A, Yariv S, Yedidia I. Plant Phenolic Acids Affect the Virulence of Pectobacterium Aroidearum and P. carotovorum ssp. Brasiliense via Quorum Sensing Regulation. Mol. Plant Pathol. 2016;17:487–500. doi: 10.1111/mpp.12295. PubMed DOI PMC
Joshi JR, et al. Plant Phenolic Volatiles Inhibit Quorum Sensing in Pectobacteria and Reduce their Virulence by Potential Binding to ExpI and ExpR Proteins. Sci. Rep. 2016;6:38126. doi: 10.1038/srep38126. PubMed DOI PMC
Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G. Changes in the Proteome of Salmonella Enterica Serovar Thompson as Stress Adaptation to Sublethal Concentrations of Thymol. Proteomics. 2010;10:1040–9. PubMed
Yong A-L, Ooh K-F, Ong H-C, Chai T-T, Wong F-C. Investigation of Antibacterial Mechanism and Identification of Bacterial Protein Targets Mediated by Antibacterial Medicinal Plant Extracts. Food Chem. 2015;186:32–6. doi: 10.1016/j.foodchem.2014.11.103. PubMed DOI
Šrajer Gajdošik M, et al. Proteomic Analysis of Food Borne Pathogens Following the Mode of Action of the Disinfectants Based on Pyridoxal Oxime Derivatives. Food Res. Int. 2017;99:560–570. doi: 10.1016/j.foodres.2017.06.016. PubMed DOI
Sharma P, Tomar AK, Kundu B. Identification of Functional Interactome of a Key Cell Division Regulatory Protein CedA of E. coli. Int. J. Biol. Macromol. 2018;106:763–767. doi: 10.1016/j.ijbiomac.2017.08.073. PubMed DOI
Jones-Dias D, et al. Quantitative Proteome Analysis of an Antibiotic Resistant Escherichia coli Exposed to Tetracycline Reveals Multiple Affected Metabolic and Peptidoglycan Processes. J. Proteomics. 2017;156:20–28. doi: 10.1016/j.jprot.2016.12.017. PubMed DOI
Planchon M, Léger T, Spalla O, Huber G, Ferrari R. Metabolomic and Proteomic Investigations of Impacts of Titanium Dioxide Nanoparticles on Escherichia coli. PLoS One. 2017;12:e0178437. doi: 10.1371/journal.pone.0178437. PubMed DOI PMC
Sreedevi B. C. K. et al. Characterisation and Structural Dynamics of Differentially Expressed Proteins of Probiotic Eschericia coli Nissle 1917 in Response to Cocos nucifera Sap. J. Proteomics Bioinform. 07 (2014).
Guo C, et al. Characterization of Protein Species and Weighted Protein Co-Expression Network Regulation of Escherichia coli in Response to Serum Killing using a 2-DE Based Proteomics Approach. Mol. BioSyst. 2014;10:475–484. doi: 10.1039/C3MB70404A. PubMed DOI
Bore E, et al. Adapted Tolerance to Benzalkonium Chloride in Escherichia coli K-12 Studied by Transcriptome and Proteome Analyses. Microbiology. 2007;153:935–946. doi: 10.1099/mic.0.29288-0. PubMed DOI
Piras C, et al. Mechanisms of Antibiotic Resistance to Enrofloxacin in Uropathogenic Escherichia coli in Dog. J. Proteomics. 2015;127:365–376. doi: 10.1016/j.jprot.2015.05.040. PubMed DOI
Champion MM, Campbell CS, Siegele DA, Russell DH, Hu JC. Proteome Analysis of Escherichia coli K-12 by Two-Dimensional Native-State Chromatography and MALDI-MS. Mol. Microbiol. 2003;47:383–396. doi: 10.1046/j.1365-2958.2003.03294.x. PubMed DOI
Ryzhov V, Fenselau C. Characterization of the Protein Subset Desorbed by MALDI >From Whole Bacterial Cells. Anal. Chem. 2001;73:746–750. doi: 10.1021/ac0008791. PubMed DOI
Arnold RJ, Karty JA, Ellington AD, Reilly JP. Monitoring the Growth of a Bacteria Culture by MALDIMS of Whole Cells. Anal. Chem. 1999;71:1990–1996. doi: 10.1021/ac981196c. PubMed DOI
Holland RD, et al. Identification of Bacterial Proteins Observed in MALDI TOF Mass Spectra from Whole Cells. Anal. Chem. 1999;71:3226–3230. doi: 10.1021/ac990175v. PubMed DOI
Vranakis I, et al. Quantitative Proteome Profiling of C. burnetii under Tetracycline Stress Conditions. PLoS One. 2012;7:e33599. doi: 10.1371/journal.pone.0033599. PubMed DOI PMC
Gonnet F, Lemaître G, Waksman G, Tortajada J. No Title. Proteome Sci. 2003;1:2. doi: 10.1186/1477-5956-1-2. PubMed DOI PMC
Hemm MR, et al. Small Stress Response Proteins in Escherichia coli Proteins Missed by Classical Proteomic Studies. J. Bacteriol. 2010;192:46–58. doi: 10.1128/JB.00872-09. PubMed DOI PMC
Joshi, K. & Patil, D. Proteomics. In Innovative Approaches in Drug Discovery 273–294, 10.1016/B978-0-12-801814-9.00009-X (Elsevier, 2017).
Momo RA, et al. MALDI-ToF Mass Spectrometry Coupled with Multivariate Pattern Recognition Analysis for the Rapid Biomarker Profiling of Escherichia coli in Different Growth phases. Anal. Bioanal. Chem. 2013;405:8251–8265. doi: 10.1007/s00216-013-7245-y. PubMed DOI
Schott A-SS, Behr J, Quinn J, Vogel RF. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. PLoS One. 2016;11:e0165504. doi: 10.1371/journal.pone.0165504. PubMed DOI PMC
Hasan N, Ahmad F, Wu H-F. Monitoring the Heat Stress Response of Escherichia coli via NiO Nanoparticle Assisted MALDI–TOF Mass Spectrometry. Talanta. 2013;103:38–46. doi: 10.1016/j.talanta.2012.10.003. PubMed DOI
Calvano CD, et al. MALDI-TOF Mass Spectrometry Analysis of Proteins and Lipids in Escherichia coli Exposed to Copper Ions and Nanoparticles. J. Mass Spectrom. 2016;51:828–840. doi: 10.1002/jms.3823. PubMed DOI
Meetani MA, Voorhees KJ. MALDI Mass Spectrometry Analysis of High Molecular Weight Proteins from Whole Bacterial Cells: Pretreatment of Samples with Surfactants. J. Am. Soc. Mass Spectrom. 2005;16:1422–1426. doi: 10.1016/j.jasms.2005.04.004. PubMed DOI
Strohalm M, Hassman M, Košata B, Kodíček MM. Mass Data Miner: An Open Source Alternative for Mass Spectrometric Data Analysis. Rapid Commun. Mass Spectrom. 2008;22:905–908. doi: 10.1002/rcm.3444. PubMed DOI
Momo, R. A. M. MALDI-ToF Mass Spectrometry Biomarker Profiling Via Multivariate Data Analysis Application in the Biopharmaceutical Bioprocessing Industry. (University of Newcastle upon Tyne, 2013).
Du E, et al. In vitro Antibacterial Activity of Thymol and Carvacrol and their Effects on Broiler Chickens Challenged with Clostridium Perfringens. J. Anim. Sci. Biotechnol. 2015;6:58. doi: 10.1186/s40104-015-0055-7. PubMed DOI PMC
Helander IM, et al. Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. J. Agric. Food Chem. 1998;46:3590–3595. doi: 10.1021/jf980154m. DOI
Cosentino S, et al. In-vitro Antimicrobial Activity and Chemical Composition of Sardinian Thymus Essential oils. Lett. Appl. Microbiol. 1999;29:130–135. doi: 10.1046/j.1472-765X.1999.00605.x. PubMed DOI
Faleiro, M. L. & Miguel, M. G. Use of Essential Oils and Their Components against Multidrug-Resistant Bacteria. In Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components 65–94, 10.1016/B978-0-12-398539-2.00006-9 (Elsevier, 2013).
Glamočlija, J. M. et al. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae) Essential Oil. Rec. Nat. Prod. 5, 319–323, Accession Number: WOS:000290723600011 (2011).
Burt S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—a Review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Trombetta D, et al. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 2005;49:2474–2478. doi: 10.1128/AAC.49.6.2474-2478.2005. PubMed DOI PMC
Wattanasatcha A, Rengpipat S, Wanichwecharungruang S. Thymol Nanospheres as an Effective Antibacterial Agent. Int. J. Pharm. 2012;434:360–5. doi: 10.1016/j.ijpharm.2012.06.017. PubMed DOI
Tisserand, R. & Young, R. Constituent Profiles. In Essential Oil Safety 483–647, 10.1016/B978-0-443-06241-4.00014-X (Elsevier, 2014).
Ruberto G, Baratta MT. Antioxidant Activity of Selected Essential Oil Components in Two Lipid Model Systems. Food Chem. 2000;69:167–174. doi: 10.1016/S0308-8146(99)00247-2. DOI
Doerge DR, Divi RL, Churchwell MI. Identification of the Colored Guaiacol Oxidation Product Produced by Peroxidases. Anal. Biochem. 1997;250:10–17. doi: 10.1006/abio.1997.2191. PubMed DOI
Baba T, Tani T. Wood Creosote: A Historical Study and its Preparation in Combination with Herbal Drugs. Yakushigaku Zasshi. 2001;36:10–17. PubMed
Davies J, Spiegelman GB, Yim G. The World of Subinhibitory Antibiotic Concentrations. Curr. Opin. Microbiol. 2006;9:445–453. doi: 10.1016/j.mib.2006.08.006. PubMed DOI
Ling LL, et al. A New Antibiotic Kills Pathogens Without Detectable Resistance. Nature. 2015;517:455–459. doi: 10.1038/nature14098. PubMed DOI PMC
Richardson LA. Understanding and overcoming antibiotic resistance. PLOS Biol. 2017;15:e2003775. doi: 10.1371/journal.pbio.2003775. PubMed DOI PMC
Müller SA, et al. Optimization of Parameters for Coverage of Low Molecular Weight Proteins. Anal. Bioanal. Chem. 2010;398:2867–2881. doi: 10.1007/s00216-010-4093-x. PubMed DOI PMC
Dri AM, Rouviere-Yaniv J, Moreau PL. Inhibition of Cell Division in hupA hupB Mutant Bacteria Lacking HU Protein. J. Bacteriol. 1991;173:2852–2863. doi: 10.1128/jb.173.9.2852-2863.1991. PubMed DOI PMC
Phadtare S. Recent Developments in Bacterial Cold-Shock Response. Curr. Issues Mol. Biol. 2004;6:125–36. PubMed
Ho FY, Poolman B. Engineering Escherichia coli for Functional Expression of Membrane Proteins. Methods Enzymol. 2015;556:3–21. doi: 10.1016/bs.mie.2015.01.003. PubMed DOI
Kim YG, et al. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci. Rep. 2016;6:36377. doi: 10.1038/srep36377. PubMed DOI PMC
Juhas M, Reuss DR, Zhu B, Commichau FM. Bacillus Subtilis and Escherichia coli Essential Genes and Minimal cell Factories after one Decade of Genome Engineering. Microbiology. 2014;160:2341–2351. doi: 10.1099/mic.0.079376-0. PubMed DOI
Izutsu K, et al. Escherichia coli Ribosome-Associated Protein SRA, Whose Copy Number Increases during Stationary Phase. J. Bacteriol. 2001;183:2765–2773. doi: 10.1128/JB.183.9.2765-2773.2001. PubMed DOI PMC
Yamaguchi Y, Nariya H, Park J-H, Inouye M. Inhibition of Specific Gene Expressions by Protein-Mediated mRNA Interference. Nat. Commun. 2012;3:607. doi: 10.1038/ncomms1621. PubMed DOI
Herzberg M, Kaye IK, Peti W, Wood TK. YdgG (TqsA) Controls Biofilm Formation in Escherichia coli K-12 Through Autoinducer 2 Transport. J. Bacteriol. 2006;188:587–598. doi: 10.1128/JB.188.2.587-598.2006. PubMed DOI PMC
Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential Oils, a New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014;8:6–14. doi: 10.2174/1874285801408010006. PubMed DOI PMC
Migliore, L., Rotini, A. & Thaller, M. C. Low Doses of Tetracycline Trigger the E. coli Growth: A Case of Hormetic Response. Dose-Response 11, dose-response.1 (2013). PubMed PMC
Zubko EI, Zubko MK. Co-Operative Inhibitory Effects of Hydrogen Peroxide and Iodine Against Bacterial and Yeast Species. BMC Res. Notes. 2013;6:272. doi: 10.1186/1756-0500-6-272. PubMed DOI PMC
Hrdlickova Kuckova S, et al. Evaluation of Mass Spectrometric Data Using Principal Component Analysis for Determination of the Effects of Organic Lakes on Protein Binder Identification. J. Mass Spectrom. 2015;50:1270–1278. doi: 10.1002/jms.3699. PubMed DOI
Cejnar, P., Kuckova, S., Prochazka, A., Karamonova, L. & Svobodova, B. Principal Component Analysis of Normalized full Spectrum Mass Spectrometry Data in multiMS-Toolbox: An Effective Tool to Identify Important Factors for Classification of Different Metabolic Patterns and Bacterial Strains. Rapid Commun. Mass Spectrom. 10.1002/rcm.8110 (2018). PubMed
Gasteiger, E. et al. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook 571–607, 10.1385/1-59259-890-0:571 (Humana Press, 2005).