Rational steering of insulin binding specificity by intra-chain chemical crosslinking
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/K000179/1
Medical Research Council - United Kingdom
PubMed
26792393
PubMed Central
PMC4726324
DOI
10.1038/srep19431
PII: srep19431
Knihovny.cz E-zdroje
- MeSH
- alkyny chemie MeSH
- azidy chemie MeSH
- cykloadiční reakce MeSH
- inzulin chemie metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- protein - isoformy MeSH
- receptor IGF typ 1 chemie metabolismus MeSH
- receptor inzulinu chemie metabolismus MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkyny MeSH
- azidy MeSH
- inzulin MeSH
- protein - isoformy MeSH
- receptor IGF typ 1 MeSH
- receptor inzulinu MeSH
Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone's B-chain C-terminus for its IR-B specificity.
Zobrazit více v PubMed
Taniguchi C. M., Emanuelli B. & Kahn C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006). PubMed
Cohen P. Timeline - the twentieth century struggle to decipher insulin signalling. Nat. Rev. Mol. Cell Biol. 7, 867–873 (2006). PubMed
Ward C. W., Menting J. G. & Lawrence M. C. The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. Bioessays 35, 945–954 (2013). PubMed
Cabail M. Z. et al. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nat. Commun. 6, 6406 (2015). PubMed PMC
Seino S. & Bell G. I. Alternative splicing of human insulin receptor messenger RNA. Biochem. Biophys. Res. Commun. 159, 312–316 (1989). PubMed
Moller D. E., Yokota A., Caro J. F. & Flier J. S. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol. Endocrinol. 3, 1263–1269 (1989). PubMed
Mosthaf L. et al. Functionally distinct insulin-receptors generated by tissue-specific alternative splicing. EMBO J. 9, 2409–2413 (1990). PubMed PMC
Serrano R. et al. Differential gene expression of insulin receptor isoforms A and B and insulin receptor substrates 1, 2 and 3 in rat tissues: modulation by aging and differentiation in rat adipose tissue. J. Mol. Endocrinol. 34, 153–161 (2005). PubMed
Jonietz E. Diabetes. Nature 485, S1–S19 (2012). PubMed
Boucher J., Kleinridders A. & Kahn C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspect. Biol. 6, a009191 (2014). PubMed PMC
Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 9, 224–224 (2009). PubMed
Talbot K. et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122, 1316–1338 (2012). PubMed PMC
Herring R., Jones R. H. & Russell-Jones D. L. Hepatoselectivity and the evolution of insulin. Diabetes Obes. Metab. 16, 1–8 (2014). PubMed
Menting J. G. et al. How insulin engages its primary binding site on the insulin receptor. Nature 493, 241–245 (2013). PubMed PMC
Menting J. G. et al. Protective hinge in insulin opens to enable its receptor engagement. Proc. Natl. Acad. Sci. USA. 111, E3395–E3404 (2014). PubMed PMC
Zakova L. et al. Insulin analogues with modifications at position B26. Divergence of binding affinity and biological activity. Biochemistry 47, 5858–5868 (2008). PubMed
Jiracek J. et al. Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc. Natl. Acad. Sci.USA. 107, 1966–1970 (2010). PubMed PMC
Zakova L. et al. Structural integrity of the B24 site in human insulin is important for hormone functionality. J. Biol. Chem. 288, 10230–10240 (2013). PubMed PMC
Zakova L. et al. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex. Acta Crystallogr. D 70, 2765–2774 (2014). PubMed PMC
Tornoe C. W., Christensen C. & Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002). PubMed
Rostovtsev V. V., Green L. G., Fokin V. V. & Sharpless K. B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem.-Int. Edit. 41, 2596–2599 (2002). PubMed
Meldal M. & Tornoe C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008). PubMed
Pedersen D. S. & Abell A. 1,2,3-Triazoles in Peptidomimetic Chemistry. Eur. J. Org. Chem., 2399–2411 (2011).
Angell Y. L. & Burgess K. Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem. Soc. Rev. 36, 1674–1689 (2007). PubMed
Park J. H. & Waters M. L. Positional effects of click cyclization on beta-hairpin structure, stability, and function. Org. Biomol. Chem. 11, 69–77 (2013). PubMed PMC
Kawamoto S. A. et al. Design of triazole-stapled BCL9 alpha-helical peptides to target the beta-catenin/B-cell CLL/lymphoma 9 (BCL9) Protein-protein interaction. J. Med. Chem. 55, 1137–1146 (2012). PubMed PMC
Scrima M. et al. Cu-I-catalyzed azide-alkyne intramolecular i-to-(i + 4) side-chain-to-side-chain cyclization promotes the formation of helix-like secondary structures. Eur. J. Org. Chem., 446–457 (2010).
Ingale S. & Dawson P. E. On resin side-chain cyclization of complex peptides using CuAAC. Org. Lett. 13, 2822–2825 (2011). PubMed
Holland-Nell K. & Meldal M. Maintaining biological activity by using triazoles as disufide bond mimetics. Angew. Chem.-Int. Edit. 50, 5204–5206 (2011). PubMed
Williams G. M., Lee K., Li X., Cooper G. J. S. & Brimble M. A. Replacement of the CysA7-CysB7 disulfide bond with a 1,2,3-triazole linker causes unfolding in insulin glargine. Org. Biomol. Chem. 13, 4059–4063 (2015). PubMed
Neumann H., Wang K. H., Davis L., Garcia-Alai M. & Chin J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010). PubMed
Zakova L. et al. The use of Fmoc-Lys(Pac)-OH and penicillin G acylase in the preparation of novel semisynthetic insulin analogs. J. Pept. Sci. 13, 334–341 (2007). PubMed
Nakagawa S. H. & Tager H. S. Importance of aliphatic side-chain structure at positions 2 and 3 of the insulin A chain in insulin-receptor interactions. Biochemistry 31, 3204–3214 (1992). PubMed
Chen X. Q., Khairallah G. N., O’Hair R. A. J. & Williams S. J. Fixed-charge labels for simplified reaction analysis: 5-hydroxy-1,2,3-triazoles as byproducts of a copper(I)-catalyzed click reaction. Tetrahedron Lett. 52, 2750–2753 (2011).
Ludvigsen S., Olsen H. B. & Kaarsholm N. C. A structural switch in a mutant insulin exposes key residues for receptor binding. J. Mol. Biol. 279, 1–7 (1998). PubMed
Glendorf T. et al. Engineering of insulin receptor isoform-selective insulin analogues. PLoS ONE 6, e20288 (2011). PubMed PMC
Isaad A. L., Papini A. M., Chorev M. & Rovero P. Side chain-to-side chain cyclization by click reaction. J. Pept. Sci. 15, 451–454 (2009). PubMed
Herrmann T., Guntert P. & Wuthrich K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002). PubMed
Guntert P. & Wuthrich K. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J. Biomol. NMR 1, 447–456 (1991). PubMed
Harjes E. et al. GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure 14, 881–888 (2006). PubMed
Koradi R., Billeter M. & Wuthrich K. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996). PubMed
Bhattacharya A., Tejero R. & Montelione G. T. Evaluating protein structures determined by structural genomics consortia. Proteins 66, 778–795 (2007). PubMed
Kabsch W. Xds. Acta Crystallogr. D 66, 125–132 (2010). PubMed PMC
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D 66, 133–144 (2010). PubMed PMC
Otwinowski Z. & Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997). PubMed
Winn M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011). PubMed PMC
Vagin A. & Teplyakov A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).
Murshudov G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011). PubMed PMC
Emsley P., Lohkamp B., Scott W. G. & Cowtan K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). PubMed PMC
McNicholas S., Potterton E., Wilson K. S. & Noble M. E. M. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D 67, 386–394 (2011). PubMed PMC
Morcavallo A. et al. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J. Biol. Chem. 287, 11422–11436 (2012). PubMed PMC
Kosinova L. et al. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 53, 3392–3402 (2014). PubMed PMC
A radioligand binding assay for the insulin-like growth factor 2 receptor
Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs
Optimized syntheses of Fmoc azido amino acids for the preparation of azidopeptides