A monograph of Aspergillus section Candidi
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36760463
PubMed Central
PMC9903906
DOI
10.3114/sim.2022.102.01
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus candidus, Aspergillus tritici, genealogical concordance, integrative taxonomy, intraspecific variability, multispecies coalescent model,
- Publikační typ
- časopisecké články MeSH
Aspergillus section Candidi encompasses white- or yellow-sporulating species mostly isolated from indoor and cave environments, food, feed, clinical material, soil and dung. Their identification is non-trivial due to largely uniform morphology. This study aims to re-evaluate the species boundaries in the section Candidi and present an overview of all existing species along with information on their ecology. For the analyses, we assembled a set of 113 strains with diverse origin. For the molecular analyses, we used DNA sequences of three house-keeping genes (benA, CaM and RPB2) and employed species delimitation methods based on a multispecies coalescent model. Classical phylogenetic methods and genealogical concordance phylogenetic species recognition (GCPSR) approaches were used for comparison. Phenotypic studies involved comparisons of macromorphology on four cultivation media, seven micromorphological characters and growth at temperatures ranging from 10 to 45 °C. Based on the integrative approach comprising four criteria (phylogenetic and phenotypic), all currently accepted species gained support, while two new species are proposed (A. magnus and A. tenebricus). In addition, we proposed the new name A. neotritici to replace an invalidly described A. tritici. The revised section Candidi now encompasses nine species, some of which manifest a high level of intraspecific genetic and/or phenotypic variability (e.g., A. subalbidus and A. campestris) while others are more uniform (e.g., A. candidus or A. pragensis). The growth rates on different media and at different temperatures, colony colours, production of soluble pigments, stipe dimensions and vesicle diameters contributed the most to the phenotypic species differentiation. Taxonomic novelties: New species: Aspergillus magnus Glässnerová & Hubka; Aspergillus neotritici Glässnerová & Hubka; Aspergillus tenebricus Houbraken, Glässnerová & Hubka. Citation: Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie CM, Gené J, Siqueira JPZ, Kubátová A, Kolařík M, Hubka V (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1-51. doi: 10.3114/sim.2022.102.01.
Department of Botany Faculty of Science Charles University Prague Czech Republic
EMSL Analytical Cinnaminson New Jersey USA
Medical Mycology Research Center Chiba University Chuo ku Chiba Japan
Westerdijk Fungal Biodiversity Institute Utrecht The Netherlands
Zobrazit více v PubMed
Becker A, Sifaoui F, Gagneux M, PubMed
Bian C, Kusuya Y, Sklenář F, PubMed PMC
Bouckaert R, Heled J, Kühnert D, PubMed PMC
Carballo GM, Miranda JA, Arechavala A,
Chen A, Frisvad JC, Sun B, PubMed PMC
Chen A, Hubka V, Frisvad JC, PubMed PMC
Christensen M. (1982). The
Darriba D, Taboada GL, Doallo R, PubMed PMC
Dettman JR, Jacobson DJ, Taylor JW. (2003a). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote PubMed
Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW. (2003b) Reproductive isolation and phylogenetic divergence in PubMed
Drott MT, Rush TA, Satterlee TR, PubMed PMC
Edwards SV. (2009). Is a new and general theory of molecular systematics emerging? Evolution: International Journal of Organic Evolution 63: 1–19. PubMed
El-Desoky AH, Inada N, Maeyama Y, PubMed
Elaasser MM, Abdel-Aziz MM, El-Kassas RA. (2011). Antioxidant, antimicrobial, antiviral and antitumor activities of pyranone derivative obtained from
Farias CM, De Souza OC, Sousa MA,
Fujisawa T, Barraclough TG. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724. PubMed PMC
Fujisawa T, Aswad A, Barraclough TG. (2016). A rapid and scalable method for multilocus species delimitation using Bayesian model comparison and rooted triplets. Systematic Biology 65: 759–771. PubMed PMC
Garai D, Kumar V. (2013). Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant PubMed PMC
Glass NL, Donaldson GC. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. PubMed PMC
Grazia L, Romano P, Bagni A,
Guevara-Suarez M, García D, Cano-Lira J, PubMed PMC
Gupta A, Gupta G, Jain H, PubMed
Hall T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series: 95–98.
Han J, Lu F, Bao L, PubMed
Heled J, Drummond AJ. (2009). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580. PubMed PMC
Hong S-B, Cho H-S, Shin H-D, PubMed
Houbraken J, Kocsubé S, Visagie C, PubMed PMC
Hubka V, Kolařík M. (2012). β-tubulin paralogue PubMed PMC
Hubka V, Kubatova A, Mallatova N, PubMed
Hubka V, Kolařík M, Kubátová A, PubMed
Hubka V, Peterson SW, Frisvad JC, PubMed
Hubka V, Lyskova P, Frisvad JC, PubMed
Hubka V, Nováková A, Kolařík M, PubMed
Hubka V, Nováková A, Peterson SW,
Hubka V, Barrs V, Dudová Z, PubMed PMC
Hubka V, Nováková A, Jurjević Ž, PubMed
Jones G, Aydin Z, Oxelman B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31: 991–998. PubMed
Jones G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74: 447–467. PubMed
Jurjević Ž, Kubátová A, Kolařík M,
Kagiyama I, Kato H, Nehira T, PubMed PMC
Katoh K, Rozewicki J, Yamada KD. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. PubMed PMC
Kaur M, Singla N, Bhalla M, PubMed
Klich MA. (2002). Biogeography of PubMed
Kato H, Sebe M, Nagaki M, PubMed
Kobayashi A, Takemura A, Koshimizu K,
Kobmoo N, Mongkolsamrit S, Arnamnart N, PubMed
Kornerup A, Wanscher JH. (1978). Methuen handbook of colour (ten nazev kurzivou). 3rd ed. Eyre Methuen, London.
Lanfear R, Frandsen PB, Wright AM, PubMed
Letunic I, Bork P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293–W296. PubMed PMC
Li W, Jiao F-W, Wang J-Q,
Lin Y-K, Xie C-L, Xing C-P, PubMed
Liu YJ, Whelen S, Hall BD. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. PubMed
Lofgren LA, Ross BS, Cramer RA, Stajich JE. (2021) Combined pan-, population-, and phylo-genomic analysis of DOI
Malhão F, Ramos AA, Buttachon S, PubMed PMC
Marchelli R, Vining L. (1973). The biosyethetic origin of chlorflavonin, a flavonoid antibiotic from PubMed
Masih A, Singh PK, Kathuria S, PubMed PMC
Matute DR, Sepúlveda VE. (2019). Fungal species boundaries in the genomics era. Fungal Genetics and Biology 131: 1–9. PubMed PMC
Mavengere H, Mattox K, Teixeira MM, PubMed PMC
Mehrotra B, Basu M. (1976). Some interesting new isolates of
Milala M, Shehu B, Zanna H,
Mirarab S, Bayzid MS, Warnow T. (2016). Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Systematic Biology 65: 366–380. PubMed
Moling O, Lass-Floerl C, Verweij P, PubMed
Munden J, Butterworth D, Hanscomb G, PubMed PMC
Nguyen L-T, Schmidt HA, Von Haeseler A, PubMed PMC
Nouripour-Sisakht S, Mirhendi H, Shidfar M, PubMed
Nováková A, Hubka V, Valinová Š, PubMed
O’Donnell K. (1993).
O’Donnell K, Cigelnik E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus PubMed
Oh H, Gloer JB, Wicklow DT, Dowd PF. (1998). Arenarins A−C: new cytotoxic fungal metabolites from the sclerotia of PubMed
Papavizas G, Christensen C. (1960). Grain storage studies. XXIX. Effect of invasion by individual species and mixtures of species of
Paradis E, Claude J, Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. PubMed
Paradis E. (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26: 419–420. PubMed
Perrone G, Susca A, Epifani F, PubMed
Peterson SW. (2008). Phylogenetic analysis of PubMed
Pitt JI, Hocking AD. (1997).
R Core Team (2021). R: A language and environment for statistical computing, Vienna, Austria.
Rahbæk L, Frisvad JC, Christophersen C. (2000) An amendment of PubMed
Raper KB, Fennell DI. (1965). The genus Aspergillus. Baltimore, Williams & Wilkins.
Reid NM, Carstens BC. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12: 1–11. PubMed PMC
Ronquist F, Teslenko M, Van Der Mark P, PubMed PMC
Samson RA, Gams W. (1985). Typification of the species of
Samson RA, Visagie CM, Houbraken J, PubMed PMC
Shan T, Wang Y, Wang S, PubMed PMC
Sklenář F, Jurjević Ž, Zalar P, PubMed PMC
Sklenář F, Jurjević Ž, Houbraken J, PubMed PMC
Sklenář F, Glässnerová K, Jurjević Ž, PubMed PMC
Sukumaran J, Holder MT, Knowles LL. (2021). Incorporating the speciation process into species delimitation. PLoS Computational Biology 17: 1–19. PubMed PMC
Sunesen L, Stahnke L. (2003). Mould starter cultures for dry sausages-selection, application and effects. Meat Science 65: 935–948. PubMed
Swofford DL. (2003) PAUP* Phylogenetic analysis using parsimony, (*and other methods); version 4.0 b10; Sunderland, Sinauer Associates.
Taylor JW, Jacobson DJ, Kroken S, PubMed
Thom C, Raper K. (1945). A Manual of the Aspergilli. Baltimore, Williams & Wilkins.
Turland NJ, Wiersema JH, Barrie FR,
Van Rossum G, Drake F. (2019). Python language reference, version 3. Python Software Foundation.
Varga J, Frisvad JC, Samson RA. (2007). Polyphasic taxonomy of PubMed PMC
Visagie CM, Goodwell M, Nkwe D. (2021). PubMed PMC
Visagie CM, Hirooka Y, Tanney JB, PubMed PMC
Visagie CM, Yilmaz N, Renaud JB,
Wang D, Qu P, Zhou J,
Wei H, Inada H, Hayashi A, PubMed
Weidenbörner M, Kunz B. (1994). Contamination of different muesli components by fungi. Mycological Research 98: 583–586.
White TJ, Bruns T, Lee S,
Wickham H. (2016). ggplot2: elegant graphics for data analysis. Verlag, New York, Springer.
Yaguchi T, Someya A, Udagawa S-I. (1995).
Yang Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854–865.
Yen G-C, Chang Y-C, Sheu F, PubMed
Zhang J, Kapli P, Pavlidis P, PubMed PMC
Zhou G, Sun C, Hou X, PubMed
A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species
Reducing the number of accepted species in Aspergillus series Nigri
Dryad
10.5061/dryad.3j9kd51mq