A monograph of Aspergillus section Candidi

. 2022 Dec ; 102 () : 1-51. [epub] 20221019

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36760463

Aspergillus section Candidi encompasses white- or yellow-sporulating species mostly isolated from indoor and cave environments, food, feed, clinical material, soil and dung. Their identification is non-trivial due to largely uniform morphology. This study aims to re-evaluate the species boundaries in the section Candidi and present an overview of all existing species along with information on their ecology. For the analyses, we assembled a set of 113 strains with diverse origin. For the molecular analyses, we used DNA sequences of three house-keeping genes (benA, CaM and RPB2) and employed species delimitation methods based on a multispecies coalescent model. Classical phylogenetic methods and genealogical concordance phylogenetic species recognition (GCPSR) approaches were used for comparison. Phenotypic studies involved comparisons of macromorphology on four cultivation media, seven micromorphological characters and growth at temperatures ranging from 10 to 45 °C. Based on the integrative approach comprising four criteria (phylogenetic and phenotypic), all currently accepted species gained support, while two new species are proposed (A. magnus and A. tenebricus). In addition, we proposed the new name A. neotritici to replace an invalidly described A. tritici. The revised section Candidi now encompasses nine species, some of which manifest a high level of intraspecific genetic and/or phenotypic variability (e.g., A. subalbidus and A. campestris) while others are more uniform (e.g., A. candidus or A. pragensis). The growth rates on different media and at different temperatures, colony colours, production of soluble pigments, stipe dimensions and vesicle diameters contributed the most to the phenotypic species differentiation. Taxonomic novelties: New species: Aspergillus magnus Glässnerová & Hubka; Aspergillus neotritici Glässnerová & Hubka; Aspergillus tenebricus Houbraken, Glässnerová & Hubka. Citation: Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie CM, Gené J, Siqueira JPZ, Kubátová A, Kolařík M, Hubka V (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1-51. doi: 10.3114/sim.2022.102.01.

Zobrazit více v PubMed

Becker A, Sifaoui F, Gagneux M, PubMed

Bian C, Kusuya Y, Sklenář F, PubMed PMC

Bouckaert R, Heled J, Kühnert D, PubMed PMC

Carballo GM, Miranda JA, Arechavala A,

Chen A, Frisvad JC, Sun B, PubMed PMC

Chen A, Hubka V, Frisvad JC, PubMed PMC

Christensen M. (1982). The

Darriba D, Taboada GL, Doallo R, PubMed PMC

Dettman JR, Jacobson DJ, Taylor JW. (2003a). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote PubMed

Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW. (2003b) Reproductive isolation and phylogenetic divergence in PubMed

Drott MT, Rush TA, Satterlee TR, PubMed PMC

Edwards SV. (2009). Is a new and general theory of molecular systematics emerging? Evolution: International Journal of Organic Evolution 63: 1–19. PubMed

El-Desoky AH, Inada N, Maeyama Y, PubMed

Elaasser MM, Abdel-Aziz MM, El-Kassas RA. (2011). Antioxidant, antimicrobial, antiviral and antitumor activities of pyranone derivative obtained from

Farias CM, De Souza OC, Sousa MA,

Fujisawa T, Barraclough TG. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724. PubMed PMC

Fujisawa T, Aswad A, Barraclough TG. (2016). A rapid and scalable method for multilocus species delimitation using Bayesian model comparison and rooted triplets. Systematic Biology 65: 759–771. PubMed PMC

Garai D, Kumar V. (2013). Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant PubMed PMC

Glass NL, Donaldson GC. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. PubMed PMC

Grazia L, Romano P, Bagni A,

Guevara-Suarez M, García D, Cano-Lira J, PubMed PMC

Gupta A, Gupta G, Jain H, PubMed

Hall T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series: 95–98.

Han J, Lu F, Bao L, PubMed

Heled J, Drummond AJ. (2009). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580. PubMed PMC

Hong S-B, Cho H-S, Shin H-D, PubMed

Houbraken J, Kocsubé S, Visagie C, PubMed PMC

Hubka V, Kolařík M. (2012). β-tubulin paralogue PubMed PMC

Hubka V, Kubatova A, Mallatova N, PubMed

Hubka V, Kolařík M, Kubátová A, PubMed

Hubka V, Peterson SW, Frisvad JC, PubMed

Hubka V, Lyskova P, Frisvad JC, PubMed

Hubka V, Nováková A, Kolařík M, PubMed

Hubka V, Nováková A, Peterson SW,

Hubka V, Barrs V, Dudová Z, PubMed PMC

Hubka V, Nováková A, Jurjević Ž, PubMed

Jones G, Aydin Z, Oxelman B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31: 991–998. PubMed

Jones G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74: 447–467. PubMed

Jurjević Ž, Kubátová A, Kolařík M,

Kagiyama I, Kato H, Nehira T, PubMed PMC

Katoh K, Rozewicki J, Yamada KD. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. PubMed PMC

Kaur M, Singla N, Bhalla M, PubMed

Klich MA. (2002). Biogeography of PubMed

Kato H, Sebe M, Nagaki M, PubMed

Kobayashi A, Takemura A, Koshimizu K,

Kobmoo N, Mongkolsamrit S, Arnamnart N, PubMed

Kornerup A, Wanscher JH. (1978). Methuen handbook of colour (ten nazev kurzivou). 3rd ed. Eyre Methuen, London.

Lanfear R, Frandsen PB, Wright AM, PubMed

Letunic I, Bork P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293–W296. PubMed PMC

Li W, Jiao F-W, Wang J-Q,

Lin Y-K, Xie C-L, Xing C-P, PubMed

Liu YJ, Whelen S, Hall BD. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. PubMed

Lofgren LA, Ross BS, Cramer RA, Stajich JE. (2021) Combined pan-, population-, and phylo-genomic analysis of DOI

Malhão F, Ramos AA, Buttachon S, PubMed PMC

Marchelli R, Vining L. (1973). The biosyethetic origin of chlorflavonin, a flavonoid antibiotic from PubMed

Masih A, Singh PK, Kathuria S, PubMed PMC

Matute DR, Sepúlveda VE. (2019). Fungal species boundaries in the genomics era. Fungal Genetics and Biology 131: 1–9. PubMed PMC

Mavengere H, Mattox K, Teixeira MM, PubMed PMC

Mehrotra B, Basu M. (1976). Some interesting new isolates of

Milala M, Shehu B, Zanna H,

Mirarab S, Bayzid MS, Warnow T. (2016). Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Systematic Biology 65: 366–380. PubMed

Moling O, Lass-Floerl C, Verweij P, PubMed

Munden J, Butterworth D, Hanscomb G, PubMed PMC

Nguyen L-T, Schmidt HA, Von Haeseler A, PubMed PMC

Nouripour-Sisakht S, Mirhendi H, Shidfar M, PubMed

Nováková A, Hubka V, Valinová Š, PubMed

O’Donnell K. (1993).

O’Donnell K, Cigelnik E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus PubMed

Oh H, Gloer JB, Wicklow DT, Dowd PF. (1998). Arenarins A−C: new cytotoxic fungal metabolites from the sclerotia of PubMed

Papavizas G, Christensen C. (1960). Grain storage studies. XXIX. Effect of invasion by individual species and mixtures of species of

Paradis E, Claude J, Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. PubMed

Paradis E. (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26: 419–420. PubMed

Perrone G, Susca A, Epifani F, PubMed

Peterson SW. (2008). Phylogenetic analysis of PubMed

Pitt JI, Hocking AD. (1997).

R Core Team (2021). R: A language and environment for statistical computing, Vienna, Austria.

Rahbæk L, Frisvad JC, Christophersen C. (2000) An amendment of PubMed

Raper KB, Fennell DI. (1965). The genus Aspergillus. Baltimore, Williams & Wilkins.

Reid NM, Carstens BC. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12: 1–11. PubMed PMC

Ronquist F, Teslenko M, Van Der Mark P, PubMed PMC

Samson RA, Gams W. (1985). Typification of the species of

Samson RA, Visagie CM, Houbraken J, PubMed PMC

Shan T, Wang Y, Wang S, PubMed PMC

Sklenář F, Jurjević Ž, Zalar P, PubMed PMC

Sklenář F, Jurjević Ž, Houbraken J, PubMed PMC

Sklenář F, Glässnerová K, Jurjević Ž, PubMed PMC

Sukumaran J, Holder MT, Knowles LL. (2021). Incorporating the speciation process into species delimitation. PLoS Computational Biology 17: 1–19. PubMed PMC

Sunesen L, Stahnke L. (2003). Mould starter cultures for dry sausages-selection, application and effects. Meat Science 65: 935–948. PubMed

Swofford DL. (2003) PAUP* Phylogenetic analysis using parsimony, (*and other methods); version 4.0 b10; Sunderland, Sinauer Associates.

Taylor JW, Jacobson DJ, Kroken S, PubMed

Thom C, Raper K. (1945). A Manual of the Aspergilli. Baltimore, Williams & Wilkins.

Turland NJ, Wiersema JH, Barrie FR,

Van Rossum G, Drake F. (2019). Python language reference, version 3. Python Software Foundation.

Varga J, Frisvad JC, Samson RA. (2007). Polyphasic taxonomy of PubMed PMC

Visagie CM, Goodwell M, Nkwe D. (2021). PubMed PMC

Visagie CM, Hirooka Y, Tanney JB, PubMed PMC

Visagie CM, Yilmaz N, Renaud JB,

Wang D, Qu P, Zhou J,

Wei H, Inada H, Hayashi A, PubMed

Weidenbörner M, Kunz B. (1994). Contamination of different muesli components by fungi. Mycological Research 98: 583–586.

White TJ, Bruns T, Lee S,

Wickham H. (2016). ggplot2: elegant graphics for data analysis. Verlag, New York, Springer.

Yaguchi T, Someya A, Udagawa S-I. (1995).

Yang Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854–865.

Yen G-C, Chang Y-C, Sheu F, PubMed

Zhang J, Kapli P, Pavlidis P, PubMed PMC

Zhou G, Sun C, Hou X, PubMed

Zobrazit více v PubMed

Dryad
10.5061/dryad.3j9kd51mq

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...