A monograph of Aspergillus section Candidi

. 2022 Dec ; 102 () : 1-51. [epub] 20221019

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36760463

Aspergillus section Candidi encompasses white- or yellow-sporulating species mostly isolated from indoor and cave environments, food, feed, clinical material, soil and dung. Their identification is non-trivial due to largely uniform morphology. This study aims to re-evaluate the species boundaries in the section Candidi and present an overview of all existing species along with information on their ecology. For the analyses, we assembled a set of 113 strains with diverse origin. For the molecular analyses, we used DNA sequences of three house-keeping genes (benA, CaM and RPB2) and employed species delimitation methods based on a multispecies coalescent model. Classical phylogenetic methods and genealogical concordance phylogenetic species recognition (GCPSR) approaches were used for comparison. Phenotypic studies involved comparisons of macromorphology on four cultivation media, seven micromorphological characters and growth at temperatures ranging from 10 to 45 °C. Based on the integrative approach comprising four criteria (phylogenetic and phenotypic), all currently accepted species gained support, while two new species are proposed (A. magnus and A. tenebricus). In addition, we proposed the new name A. neotritici to replace an invalidly described A. tritici. The revised section Candidi now encompasses nine species, some of which manifest a high level of intraspecific genetic and/or phenotypic variability (e.g., A. subalbidus and A. campestris) while others are more uniform (e.g., A. candidus or A. pragensis). The growth rates on different media and at different temperatures, colony colours, production of soluble pigments, stipe dimensions and vesicle diameters contributed the most to the phenotypic species differentiation. Taxonomic novelties: New species: Aspergillus magnus Glässnerová & Hubka; Aspergillus neotritici Glässnerová & Hubka; Aspergillus tenebricus Houbraken, Glässnerová & Hubka. Citation: Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie CM, Gené J, Siqueira JPZ, Kubátová A, Kolařík M, Hubka V (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1-51. doi: 10.3114/sim.2022.102.01.

Zobrazit více v PubMed

Becker A, Sifaoui F, Gagneux M, et al. (2015). Drug interactions between voriconazole, darunavir/ritonavir and tenofovir/emtricitabine in an HIV-infected patient treated for Aspergillus candidus lung abscess. International Journal of STD & AIDS 26: 672–675. PubMed

Bian C, Kusuya Y, Sklenář F, et al. (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: under review. PubMed PMC

Bouckaert R, Heled J, Kühnert D, et al. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: 1–6. PubMed PMC

Carballo GM, Miranda JA, Arechavala A, et al. (2020). Onicomicosis en paciente inmunocompetente por Aspergillus sección Candidi. Ars Medica 45: 42–46.

Chen A, Frisvad JC, Sun B, et al. (2016). Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Studies in Mycology 84: 1–118. PubMed PMC

Chen A, Hubka V, Frisvad JC, et al. (2017). Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food. Studies in Mycology 88: 37–135. PubMed PMC

Christensen M. (1982). The Aspergillus ochraceus group: two new species from western soils and a synoptic key. Mycologia 74: 210–225.

Darriba D, Taboada GL, Doallo R, et al. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772–772. PubMed PMC

Dettman JR, Jacobson DJ, Taylor JW. (2003a). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57: 2703–2720. PubMed

Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW. (2003b) Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57: 2721–2741. PubMed

Drott MT, Rush TA, Satterlee TR, et al. (2021). Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. Proceedings of the National Academy of Sciences 118: e2021683118. PubMed PMC

Edwards SV. (2009). Is a new and general theory of molecular systematics emerging? Evolution: International Journal of Organic Evolution 63: 1–19. PubMed

El-Desoky AH, Inada N, Maeyama Y, et al. (2021). Taichunins E–T, Isopimarane Diterpenes and a 20-nor-Isopimarane, from Aspergillus taichungensis (IBT 19404): Structures and inhibitory effects on RANKL-induced formation of multinuclear osteoclasts. Journal of Natural Products 84: 2475–2485. PubMed

Elaasser MM, Abdel-Aziz MM, El-Kassas RA. (2011). Antioxidant, antimicrobial, antiviral and antitumor activities of pyranone derivative obtained from Aspergillus candidus. Journal of Microbiology and Biotechnology 1: 5–17.

Farias CM, De Souza OC, Sousa MA, et al. (2015). High-level lipase production by Aspergillus candidus URM 5611 under solid state fermentation (SSF) using waste from Siagrus coronata (Martius) Becari. African Journal of Biotechnology 14: 820–828.

Fujisawa T, Barraclough TG. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62: 707–724. PubMed PMC

Fujisawa T, Aswad A, Barraclough TG. (2016). A rapid and scalable method for multilocus species delimitation using Bayesian model comparison and rooted triplets. Systematic Biology 65: 759–771. PubMed PMC

Garai D, Kumar V. (2013). Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation. 3 Biotech 3: 127–136. PubMed PMC

Glass NL, Donaldson GC. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. PubMed PMC

Grazia L, Romano P, Bagni A, et al. (1986). The role of moulds in the ripening process of salami. Food Microbiology 3: 19–25.

Guevara-Suarez M, García D, Cano-Lira J, et al. (2020). Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of penicillium-like fungi in Aspergillaceae. Fungal Systematics and Evolution 5: 39–76. PubMed PMC

Gupta A, Gupta G, Jain H, et al. (2016). The prevalence of unsuspected onychomycosis and its causative organisms in a multicentre Canadian sample of 30 000 patients visiting physicians’ offices. Journal of the European Academy of Dermatology and Venereology 30: 1567–1572. PubMed

Hall T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series: 95–98. PubMed

Han J, Lu F, Bao L, et al. (2020). Terphenyl derivatives and terpenoids from a wheat-born mold Aspergillus candidus. The Journal of Antibiotics 73: 189–193. PubMed

Heled J, Drummond AJ. (2009). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580. PubMed PMC

Hong S-B, Cho H-S, Shin H-D, et al. (2006). Novel Neosartorya species isolated from soil in Korea. International Journal of Systematic and Evolutionary Microbiology 56: 477–486. PubMed

Houbraken J, Kocsubé S, Visagie C, et al. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95: 5–169. PubMed PMC

Hubka V, Kolařík M. (2012). β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia 29: 1–10. PubMed PMC

Hubka V, Kubatova A, Mallatova N, et al. (2012). Rare and new etiological agents revealed among 178 clinical Aspergillus strains obtained from Czech patients and characterized by molecular sequencing. Medical Mycology 50: 601–610. PubMed

Hubka V, Kolařík M, Kubátová A, et al. (2013a). Taxonomic revision of Eurotium and transfer of species to Aspergillus. Mycologia 105: 912–937. PubMed

Hubka V, Peterson SW, Frisvad JC, et al. (2013b). Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two closely related species in section Fumigati. International Journal of Systematic and Evolutionary Microbiology 63: 783–789. PubMed

Hubka V, Lyskova P, Frisvad JC, et al. (2014). Aspergillus pragensis sp. nov. discovered during molecular reidentification of clinical isolates belonging to Aspergillus section Candidi. Sabouraudia 52: 565–576. PubMed

Hubka V, Nováková A, Kolařík M, et al. (2015). Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 107: 169–208. PubMed

Hubka V, Nováková A, Peterson SW, et al. (2016). A reappraisal of Aspergillus section Nidulantes with descriptions of two new sterigmatocystin-producing species. Plant Systematics and Evolution 302: 1267–1299.

Hubka V, Barrs V, Dudová Z, et al. (2018a). Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia 41: 142–174. PubMed PMC

Hubka V, Nováková A, Jurjević Ž, et al. (2018b). Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. International Journal of Systematic and Evolutionary Microbiology 68: 995–1011. PubMed

Jones G, Aydin Z, Oxelman B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31: 991–998. PubMed

Jones G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74: 447–467. PubMed

Jurjević Ž, Kubátová A, Kolařík M, et al. (2015). Taxonomy of Aspergillus section Petersonii sect. nov. encompassing indoor and soil-borne species with predominant tropical distribution. Plant Systematics and Evolution 301: 2441–2462.

Kagiyama I, Kato H, Nehira T, et al. (2016). Taichunamides: prenylated indole alkaloids from Aspergillus taichungensis (IBT 19404). Angewandte Chemie International Edition 55: 1128–1132. PubMed PMC

Katoh K, Rozewicki J, Yamada KD. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. PubMed PMC

Kaur M, Singla N, Bhalla M, et al. (2021). Aspergillus candidus eumycetoma with review of literature. Journal of Medical Mycology 31: 1–4. PubMed

Klich MA. (2002). Biogeography of Aspergillus species in soil and litter. Mycologia 94: 21–27. PubMed

Kato H, Sebe M, Nagaki M, et al. (2019). Taichunins A–D, norditerpenes from Aspergillus taichungensis (IBT 19404). Journal of Natural Products 82: 1377-1381. PubMed

Kobayashi A, Takemura A, Koshimizu K, et al. (1982). Candidusin A and B: new p-terphenyls with cytotoxic effects on sea urchin embryos. Agricultural and Biological Chemistry 46: 585–589.

Kobmoo N, Mongkolsamrit S, Arnamnart N, et al. (2019). Population genomics revealed cryptic species within host-specific zombie-ant fungi (Ophiocordyceps unilateralis). Molecular Phylogenetics and Evolution 140: 106580. PubMed

Kornerup A, Wanscher JH. (1978). Methuen handbook of colour (ten nazev kurzivou). 3rd ed. Eyre Methuen, London.

Lanfear R, Frandsen PB, Wright AM, et al. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. PubMed

Letunic I, Bork P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293–W296. PubMed PMC

Li W, Jiao F-W, Wang J-Q, et al. (2020). Unguisin G, a new kynurenine-containing cyclic heptapeptide from the sponge-associated fungus Aspergillus candidus NF2412. Tetrahedron Letters 61: 1–5.

Lin Y-K, Xie C-L, Xing C-P, et al. (2021). Cytotoxic p-terphenyls from the deep-sea-derived Aspergillus candidus. Natural Product Research 35: 1627–1631. PubMed

Liu YJ, Whelen S, Hall BD. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. PubMed

Lofgren LA, Ross BS, Cramer RA, Stajich JE. (2021) Combined pan-, population-, and phylo-genomic analysis of Aspergillus fumigatus reveals population structure and lineage-specific diversity. bioRxiv 2021.12.12.472145; doi: 10.1101/2021.12.12.472145. DOI

Malhão F, Ramos AA, Buttachon S, et al. (2019). Cytotoxic and antiproliferative effects of Preussin, a hydroxypyrrolidine derivative from the marine sponge-associated fungus Aspergillus candidus KUFA 0062, in a panel of breast cancer cell lines and using 2D and 3D cultures. Marine Drugs 17: 1–27. PubMed PMC

Marchelli R, Vining L. (1973). The biosyethetic origin of chlorflavonin, a flavonoid antibiotic from Aspergillus candidus. Canadian Journal of Biochemistry 51: 1624–1629. PubMed

Masih A, Singh PK, Kathuria S, et al. (2016). Identification by molecular methods and matrix-assisted laser desorption ionization–time of flight mass spectrometry and antifungal susceptibility profiles of clinically significant rare Aspergillus species in a referral chest hospital in Delhi, India. Journal of Clinical Microbiology 54: 2354–2364. PubMed PMC

Matute DR, Sepúlveda VE. (2019). Fungal species boundaries in the genomics era. Fungal Genetics and Biology 131: 1–9. PubMed PMC

Mavengere H, Mattox K, Teixeira MM, et al. (2020). Paracoccidioides genomes reflect high levels of species divergence and little interspecific gene flow. MBio 11: 1–18. PubMed PMC

Mehrotra B, Basu M. (1976). Some interesting new isolates of Aspergillus from stored wheat and flour. Nova Hedwigia 27: 597–607.

Milala M, Shehu B, Zanna H, et al. (2009). Degradation of agro-waste by cellulase from Aspergillus candidus. Asian Journal of Biotechnology 1: 51–56.

Mirarab S, Bayzid MS, Warnow T. (2016). Evaluating summary methods for multilocus species tree estimation in the presence of incomplete lineage sorting. Systematic Biology 65: 366–380. PubMed

Moling O, Lass-Floerl C, Verweij P, et al. (2002). Chronic and acute Aspergillus meningitis. Mycoses 45: 504–511. PubMed

Munden J, Butterworth D, Hanscomb G, et al. (1970). Production of chlorflavonin, an antifungal metabolite of Aspergillus candidus. Applied Microbiology 19: 718–720. PubMed PMC

Nguyen L-T, Schmidt HA, Von Haeseler A, et al. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. PubMed PMC

Nouripour-Sisakht S, Mirhendi H, Shidfar M, et al. (2015). Aspergillus species as emerging causative agents of onychomycosis. Journal de Mycologie Medicale 25: 101–107. PubMed

Nováková A, Hubka V, Valinová Š, et al. (2018). Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study. Folia Microbiologica 63: 43–55. PubMed

O’Donnell K. (1993). Fusarium and its near relatives. In: The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (Reynolds DR, Taylor JW, eds). CAB International, Wallingford: 225–233.

O’Donnell K, Cigelnik E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116. PubMed

Oh H, Gloer JB, Wicklow DT, Dowd PF. (1998). Arenarins A−C: new cytotoxic fungal metabolites from the sclerotia of Aspergillus arenarius. Journal of Natural Products 61: 702–705. PubMed

Papavizas G, Christensen C. (1960). Grain storage studies. XXIX. Effect of invasion by individual species and mixtures of species of Aspergillus upon germination and development of discolored germs in wheat. Cereal Chemistry 37: 197–203.

Paradis E, Claude J, Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. PubMed

Paradis E. (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26: 419–420. PubMed

Perrone G, Susca A, Epifani F, et al. (2006). AFLP characterization of Southern Europe population of Aspergillus section Nigri from grapes. International Journal of Food Microbiology 111: S22–S27. PubMed

Peterson SW. (2008). Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100: 205–226. PubMed

Pitt JI, Hocking AD. (1997). Aspergillus and related teleomorphs. In: Fungi and Food Spoilage (Pitt JI, Hocking AD, eds). Springer, London: 339–416.

R Core Team (2021). R: A language and environment for statistical computing, Vienna, Austria.

Rahbæk L, Frisvad JC, Christophersen C. (2000) An amendment of Aspergillus section Candidi based on chemotaxonomical evidence. Phytochemistry 53: 581–586. PubMed

Raper KB, Fennell DI. (1965). The genus Aspergillus. Baltimore, Williams & Wilkins.

Reid NM, Carstens BC. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12: 1–11. PubMed PMC

Ronquist F, Teslenko M, Van Der Mark P, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. PubMed PMC

Samson RA, Gams W. (1985). Typification of the species of Aspergillus and associated teleomorphs. In: Advances in Penicillium and Aspergillus systematics (Samson RA, Pitt JI, eds). Plenum Press, New York: 31–54.

Samson RA, Visagie CM, Houbraken J, et al. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology 78: 141–173. PubMed PMC

Shan T, Wang Y, Wang S, et al. (2020). A new p-terphenyl derivative from the insect-derived fungus Aspergillus candidus Bdf-2 and the synergistic effects of terphenyllin. PeerJ 8: e8221. PubMed PMC

Sklenář F, Jurjević Ž, Zalar P, et al. (2017). Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Studies in Mycology 88: 161–236. PubMed PMC

Sklenář F, Jurjević Ž, Houbraken J, et al. (2021). Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species. Studies in Mycology 99: 1–30. PubMed PMC

Sklenář F, Glässnerová K, Jurjević Ž, et al. (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lesson learned about intraspecific variability. Studies in Mycology 102: under revision. PubMed PMC

Sukumaran J, Holder MT, Knowles LL. (2021). Incorporating the speciation process into species delimitation. PLoS Computational Biology 17: 1–19. PubMed PMC

Sunesen L, Stahnke L. (2003). Mould starter cultures for dry sausages-selection, application and effects. Meat Science 65: 935–948. PubMed

Swofford DL. (2003) PAUP* Phylogenetic analysis using parsimony, (*and other methods); version 4.0 b10; Sunderland, Sinauer Associates.

Taylor JW, Jacobson DJ, Kroken S, et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21–32. PubMed

Thom C, Raper K. (1945). A Manual of the Aspergilli. Baltimore, Williams & Wilkins.

Turland NJ, Wiersema JH, Barrie FR, et al. (2018). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Koeltz Botanical Books.

Van Rossum G, Drake F. (2019). Python language reference, version 3. Python Software Foundation.

Varga J, Frisvad JC, Samson RA. (2007). Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological and physiological data. Studies in Mycology 59: 75–88. PubMed PMC

Visagie CM, Goodwell M, Nkwe D. (2021). Aspergillus diversity from the Gcwihaba Cave in Botswana and description of one new species. Fungal Systematics and Evolution 8: 81–89. PubMed PMC

Visagie CM, Hirooka Y, Tanney JB, et al. (2014). Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology 78: 63–139. PubMed PMC

Visagie CM, Yilmaz N, Renaud JB, et al. (2017). A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states. MycoKeys 19: 1–30.

Wang D, Qu P, Zhou J, et al. (2020). p-Terphenyl alcohols from a marine sponge-derived fungus, Aspergillus candidus OUCMDZ-1051. Marine Life Science & Technology 2: 262–267.

Wei H, Inada H, Hayashi A, et al. (2007). Prenylterphenyllin and its dehydroxyl analogs, new cytotoxic substances from a marine-derived fungus Aspergillus candidus IF10. The Journal of Antibiotics 60: 586–590. PubMed

Weidenbörner M, Kunz B. (1994). Contamination of different muesli components by fungi. Mycological Research 98: 583–586.

White TJ, Bruns T, Lee S, et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications 18: 315–322.

Wickham H. (2016). ggplot2: elegant graphics for data analysis. Verlag, New York, Springer.

Yaguchi T, Someya A, Udagawa S-I. (1995). Aspergillus taichungensis, a new species from Taiwan. Mycoscience 36: 421–424.

Yang Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854–865.

Yen G-C, Chang Y-C, Sheu F, et al. (2001). Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. Journal of Agricultural and Food Chemistry 49: 1426–1431. PubMed

Zhang J, Kapli P, Pavlidis P, et al. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876. PubMed PMC

Zhou G, Sun C, Hou X, et al. (2021). Ascandinines A–D, indole diterpenoids, from the sponge-derived fungus Aspergillus candidus HDN15-152. The Journal of Organic Chemistry 86: 2431–2436. PubMed

Zobrazit více v PubMed

Dryad
10.5061/dryad.3j9kd51mq

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...