Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36760461
PubMed Central
PMC9903908
DOI
10.3114/sim.2022.102.02
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus creber, Aspergillus sydowii, Aspergillus versicolor, indoor fungi, multispecies coalescent model, osmotolerance, species delimitation, sterigmatocystin,
- Publikační typ
- časopisecké články MeSH
Aspergillus series Versicolores members occur in a wide range of environments and substrates such as indoor environments, food, clinical materials, soil, caves, marine or hypersaline ecosystems. The taxonomy of the series has undergone numerous re-arrangements including a drastic reduction in the number of species and subsequent recovery to 17 species in the last decade. The identification to species level is however problematic or impossible in some isolates even using DNA sequencing or MALDI-TOF mass spectrometry indicating a problem in the definition of species boundaries. To revise the species limits, we assembled a large dataset of 518 strains. From these, a total of 213 strains were selected for the final analysis according to their calmodulin (CaM) genotype, substrate and geography. This set was used for phylogenetic analysis based on five loci (benA, CaM, RPB2, Mcm7, Tsr1). Apart from the classical phylogenetic methods, we used multispecies coalescence (MSC) model-based methods, including one multilocus method (STACEY) and five single-locus methods (GMYC, bGMYC, PTP, bPTP, ABGD). Almost all species delimitation methods suggested a broad species concept with only four species consistently supported. We also demonstrated that the currently applied concept of species is not sustainable as there are incongruences between single-gene phylogenies resulting in different species identifications when using different gene regions. Morphological and physiological data showed overall lack of good, taxonomically informative characters, which could be used for identification of such a large number of existing species. The characters expressed either low variability across species or significant intraspecific variability exceeding interspecific variability. Based on the above-mentioned results, we reduce series Versicolores to four species, namely A. versicolor, A. creber, A. sydowii and A. subversicolor, and the remaining species are synonymized with either A. versicolor or A. creber. The revised descriptions of the four accepted species are provided. They can all be identified by any of the five genes used in this study. Despite the large reduction in species number, identification based on phenotypic characters remains challenging, because the variation in phenotypic characters is high and overlapping among species, especially between A. versicolor and A. creber. Similar to the 17 narrowly defined species, the four broadly defined species do not have a specific ecology and are distributed worldwide. We expect that the application of comparable methodology with extensive sampling could lead to a similar reduction in the number of cryptic species in other extensively studied Aspergillus species complexes and other fungal genera. Citation: Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, Hubka V (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102 : 53-93. doi: 10.3114/sim.2022.102.02.
Department of Botany Faculty of Science Charles University Prague Czech Republic
EMSL Analytical Cinnaminson New Jersey USA
Medical Mycology Research Center Chiba University Chuo ku Chiba Japan
Microbiome Research Center Moon Biotech Ltd Guangzhou China
Westerdijk Fungal Biodiversity Institute Utrecht The Netherlands
Zobrazit více v PubMed
Ahlmann-Eltze C, Patil I. (2021). ggsignif: R Package for Displaying Significance Brackets for’ggplot2’. PsyArxiv doi: 10.31234/osf.io/7awm6.
Ahrens D, Fujisawa T, Krammer HJ, PubMed
Beck M. (2017). ggord: Ordination Plots with ggplot2. R package version 1: 588.
Boluda C, Rico V, Divakar P, PubMed PMC
Bongomin F, Moore CB, Masania R, PubMed
Borgohain P, Barua P, Dutta PJ, PubMed
Bouckaert R, Heled J. (2014). DensiTree 2: seeing trees through the forest. bioRxiv doi: 10.1101/012401.
Bouckaert R, Vaughan TG, Barido-Sottani J, PubMed PMC
Burbrink FT, Ruane S. (2021). Contemporary philosophy and methods for studying speciation and delimiting species. Ichthyology & Herpetology 109: 874–894.
Chambers EA, Hillis DM. (2020). The multispecies coalescent over-splits species in the case of geographically widespread taxa. Systematic Biology 69: 184–193. PubMed
Cicero C, Mason NA, Jiménez RA,
Danagoudar A, Pratap G, Shantaram M,
De Vries RP, Riley R, Wiebenga A, PubMed PMC
Dobolyi C, Inotai K, Bata-Vidács I,
Domsch KH, Gams W, Anderson T-H. (2007). Compendium of soil fungi. 2nd ed. edition. IHW-Verlag, Eching.
Drummond AJ, Xie W, Heled J. (2012). Bayesian inference of species trees from multilocus data using *BEAST. Molecular Biology and Evolution 29: 1969–1973. PubMed PMC
Feng XY, Wang XH, Chiang YC,
Fujisawa T, Barraclough TG. (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 62: 707–724. PubMed PMC
Gams W, Christensen M, Onions AHS,
Géry A, Lepetit C, Heutte N, PubMed PMC
Géry A, Rioult J-P, Heutte N, PubMed PMC
Glass NL, Donaldson GC. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. PubMed PMC
González-Abradelo D, Pérez-Llano Y, Peidro-Guzmán H, PubMed
Hall TA. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Hong S-B, Cho H-S, Shin H-D, PubMed
Houbraken J, Kocsubé S, Visagie CM, PubMed PMC
Huang C, Feng Y, Patel G, PubMed
Hubka V, Barrs V, Dudová Z, PubMed PMC
Hubka V, Nováková A, Peterson SW,
Imbert S, Normand AC, Gabriel F, PubMed
Jakšić Despot D, Kocsubé S, Bencsik O,
Janda-Ulfig K, Ulfig K, Markowska A. (2009). Extracellular enzyme profiles of xerophilic fungi isolated from dried materials of medicinal plants. Polish Journal of Environmental Studies 18: 391–397.
Jia J, Chen M, Mo X, PubMed PMC
Jones G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74: 447–467. PubMed
Jones G, Aydin Z, Oxelman B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31: 991–998. PubMed
Jurjević Ž, Kubátová A, Kolařík M,
Jurjević Ž, Peterson SW, Horn BW. (2012). PubMed PMC
Jurjević Ž, Peterson SW, Solfrizzo M, PubMed
Kato H, Nakahara T, Sugimoto K, PubMed PMC
Katoh K, Standley DM. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. PubMed PMC
Kekkonen M, Hebert PD. (2014). DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14: 706–715. PubMed PMC
Klich M. (1993). Morphological studies of
Klich M, Mullaney E, Daly C. (1993). Analysis of intraspecific and interspecific variability of three common species in
Kozakiewicz Z. (1989).
Kubatko LS, Degnan JH. (2007). Inconsistency of phylogenetic estimates from concatenated data under coalescence. Systematic Biology 56: 17–24. PubMed
Letunic I, Bork P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44: W242–W245. PubMed PMC
Li YC, Wen J, Ren Y,
Li Z-X, Wang X-F, Ren G-W, PubMed PMC
Liu YJ, Whelen S, Hall BD. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. PubMed
Magoga G, Fontaneto D, Montagna M. (2021). Factors affecting the efficiency of molecular species delimitation in a species-rich insect family. Molecular Ecology Resources 21: 1475–1489. PubMed
Mason NA, Fletcher NK, Gill BA,
Micheluz A, Manente S, Tigini V,
Minh BQ, Schmidt HA, Chernomor O, PubMed PMC
Nguyen HT, Nguyen TD, Le TML, PubMed
Nováková A, Hubka V, Saiz-Jimenez C, PubMed
Nováková A, Hubka V, Valinová Š, PubMed
O’Donnell K, Cigelnik E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus PubMed
Pante E, Puillandre N, Viricel A, PubMed
Paradis E. (2010). pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26: 419–420. PubMed
Parker E, Dornburg A, Struthers CD, PubMed
Peterson SW. (2008). Phylogenetic analysis of PubMed
Pitt JI, Hocking AD. (2009). Fungi and food spoilage. Springer, Dordrecht, Heidelberg, London, New York.
Posada D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. PubMed
Puillandre N, Lambert A, Brouillet S, PubMed
R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. R Foundation for Statistical Computing, Vienna, Austria.
Rank C, Nielsen KF, Larsen TO, PubMed
Raper KB, Fennell DI. (1965). The genus Aspergillus. Williams & Wilkins, Baltimore, MD.
Reid NM, Carstens BC. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12: 196. PubMed PMC
Sakhri A, Chaouche NK, Catania MR, PubMed PMC
Samson RA, Visagie CM, Houbraken J, PubMed PMC
Seo T-K. (2008). Calculating bootstrap probabilities of phylogeny using multilocus sequence data. Molecular Biology and Evolution 25: 960–971. PubMed
Shao J, Wang Q, Wei L, PubMed
Shehata AN, Abd El Aty AA, Darwish DA, PubMed
Schmitt I, Crespo A, Divakar P, PubMed PMC
Schwab CJ, Straus DC. (2004). The roles of PubMed
Siqueira JPZ, Sutton DA, García D, PubMed
Sklenář F, Jurjević Ž, Houbraken J, PubMed PMC
Sklenář F, Jurjević Ž, Peterson SW, PubMed
Sklenář F, Jurjević Ž, Zalar P, PubMed PMC
Struck TH, Feder JL, Bendiksby M, PubMed
Sukumaran J, Holder MT, Knowles LL. (2021). Incorporating the speciation process into species delimitation. PLoS Computational Biology 17: e1008924. PubMed PMC
Sukumaran J, Knowles LL. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America 114: 1607–1611. PubMed PMC
Swain SK, Debta P, Sahu MC,
Thom C, Church MB. (1926). The Aspergilli. Williams & Wilkins, Baltimore, MD.
Thom C, Raper KB. (1945). A manual of the Aspergilli. Williams & Wilkins, Maryland, MD.
Tsang C-C, Hui TWS, Lee K-C, PubMed
Turland NJ, Wiersema JH, Barrie FR,
van Rossum G, Drake FL. (2019). Python language reference, version 3. Python Software Foundation.
Venables WN, Ripley BD. (2002). Modern applied statistics with S. Fourth edition. Springer, New York.
Veršilovskis A, De Saeger S. (2010). Sterigmatocystin: occurrence in foodstuffs and analytical methods–an overview. Molecular Nutrition & Food Research 54: 136–147. PubMed
Vidal-Acuña MR, Ruiz-Pérez de Pipaón M, Torres-Sánchez MJ, PubMed
Visagie CM, Hirooka Y, Tanney JB, PubMed PMC
Wang PM, Liu XB, Dai YC,
Wang X-C, Zhuang WY. (2022). New species of PubMed PMC
Wickham H. (2016). ggplot2: elegant graphics for data analysis. Springer-Verlag, New York.
Yang Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854–865.
Zahradnik E, Kespohl S, Sander I, PubMed
A Second Fungal Outbreak in Castañar Cave, Spain, Discloses the Fragility of Subsurface Ecosystems
A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species
A monograph of Aspergillus section Candidi
Reducing the number of accepted species in Aspergillus series Nigri
Dryad
10.5061/dryad.63xsj3v5q