Deciphering Aspergillus section Terrei in Galleria mellonella model: a clade-specific pathogenicity characterization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
W1253-B24
Doctoral Program HOROS
NU21-05- 00681
Czech Ministry of Health
AV21'VP33
Project Strategie Houby Kolem nas i v nas of the Czech Academy of Sciences
PubMed
40094356
PubMed Central
PMC12053913
DOI
10.1128/spectrum.02576-24
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus terreus, Galleria mellonella model, antifungal resistance, antifungal susceptibility testing, histopathology, pathogenicity, section Terrei, virulence,
- MeSH
- antifungální látky farmakologie MeSH
- Aspergillus * patogenita klasifikace účinky léků genetika MeSH
- aspergilóza * mikrobiologie MeSH
- fylogeneze MeSH
- larva mikrobiologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- můry * mikrobiologie MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antifungální látky MeSH
UNLABELLED: The Aspergillus genus encompasses a diverse array of species, some of which are opportunistic pathogens. Traditionally, human aspergillosis has primarily been linked to a few Aspergillus species, predominantly A. fumigatus. Changes in epidemiology and advancements in molecular techniques have brought attention to less common and previously unrecognized pathogenic cryptic species. Despite the taxonomic recognition of many cryptic species in section Terrei, their virulence potential and clinical implications, compared to A. terreus sensu stricto, remain poorly understood. Hence, the current study utilized the alternative in vivo model Galleria mellonella to evaluate the virulence potential of 19 accepted Aspergillus species in section Terrei, classified into three series (major phylogenetic clades): Terrei, Nivei, and Ambigui. Analyzing the median survival rates of infected larvae of all species in each series revealed that series Ambigui has a significantly lower virulence compared to series Terrei and Nivei. Taking a closer look at series Terrei and Nivei revealed a trend of survival within each clade, dividing the species into two groups: highly virulent (up to 72 h survival) and less virulent (up to 144 h survival). Histological observation, considering fungal distribution and filamentation, further supported this assessment, revealing increased distribution and hyphal formation in virulent species. Additionally, the susceptibility profile of conventional antifungals was determined, revealing an increased azole minimum inhibitory concentration for some tested cryptic species such as A. niveus and A. iranicus. Our results highlight the importance of cryptic species identification, as they can exhibit different levels of virulence and show reduced antifungal susceptibility. IMPORTANCE: With changing fungal epidemiology and an increasingly vulnerable population, cryptic Aspergillus species are emerging as human pathogens. Their diversity and clinical relevance remain underexplored, with some species showing reduced antifungal susceptibility and higher virulence, highlighting the need for better preparedness in clinical practice. Using the Galleria mellonella model, we assessed the virulence of Aspergillus species of section Terrei, including cryptic and non-cryptic species, across three series Terrei, Nivei, and Ambigui. The results revealed significant virulence variation among the series, with some cryptic species displaying high virulence. Histological analysis confirmed increased hyphal formation and fungal spread in the more virulent species. Additionally, elevated azole minimum inhibitory concentrations were also observed in certain cryptic species. This study presents novel insights into the pathogenicity of Aspergillus section Terrei, emphasizing the critical importance of accurately identifying cryptic species due to their diverse virulence potential and antifungal resistance, which may have substantial clinical implications.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Westerdijk Fungal Biodiversity Institute Utrecht the Netherlands
Zobrazit více v PubMed
Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13. doi:10.1126/scitranslmed.3004404 PubMed DOI
Kim A, Nicolau DP, Kuti JL. 2011. Hospital costs and outcomes among intravenous antifungal therapies for patients with invasive aspergillosis in the United States. Mycoses 54:e301–12. doi:10.1111/j.1439-0507.2010.01903.x PubMed DOI
Latgé J-P, Chamilos G. 2019. Aspergillus fumigatus and aspergillosis in 2019. Clin Microbiol Rev 33:e00140-18. doi:10.1128/CMR.00140-18 PubMed DOI PMC
Steinbach WJ, Marr KA, Anaissie EJ, Azie N, Quan S-P, Meier-Kriesche H-U, Apewokin S, Horn DL. 2012. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect 65:453–464. doi:10.1016/j.jinf.2012.08.003 PubMed DOI
Baddley JW, Pappas PG, Smith AC, Moser SA. 2003. Epidemiology of Aspergillus terreus at a university hospital. J Clin Microbiol 41:5525–5529. doi:10.1128/JCM.41.12.5525-5529.2003 PubMed DOI PMC
Lass-Flörl C, Alastruey-Izquierdo A, Cuenca-Estrella M, Perkhofer S, Rodriguez-Tudela JL. 2009. In vitro activities of various antifungal drugs against Aspergillus terreus: global assessment using the methodology of the European committee on antimicrobial susceptibility testing. Antimicrob Agents Chemother 53:794–795. doi:10.1128/AAC.00335-08 PubMed DOI PMC
Hachem R, Gomes MZR, El Helou G, El Zakhem A, Kassis C, Ramos E, Jiang Y, Chaftari A-M, Raad II. 2014. Invasive aspergillosis caused by Aspergillus terreus: an emerging opportunistic infection with poor outcome independent of azole therapy. J Antimicrob Chemother 69:3148–3155. doi:10.1093/jac/dku241 PubMed DOI
Lass-Flörl C, Dietl A-M, Kontoyiannis DP, Brock M. 2021. Aspergillus terreus species complex. Clin Microbiol Rev 34:e0031120. doi:10.1128/CMR.00311-20 PubMed DOI PMC
Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J. 2024. A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Stud Mycol 107:1–66. doi: 10.3114/sim.2024.107.01 PubMed DOI PMC
Zoran T, Sartori B, Sappl L, Aigner M, Sánchez-Reus F, Rezusta A, Chowdhary A, Taj-Aldeen SJ, Arendrup MC, Oliveri S, et al. . 2018. Azole-resistance in Aspergillus terreus and related species: an emerging problem or a rare phenomenon? Front Microbiol 9:516. doi:10.3389/fmicb.2018.00516 PubMed DOI PMC
Geremia N, Giovagnorio F, Colpani A, De Vito A, Caruana G, Meloni MC, Madeddu G, Panese S, Parisi SG. 2024. What do we know about cryptic aspergillosis? Microorganisms 12:886. doi:10.3390/microorganisms12050886 PubMed DOI PMC
Balajee SA, Marr KA. 2006. Phenotypic and genotypic identification of human pathogenic aspergilli. Future Microbiol 1:435–445. doi:10.2217/17460913.1.4.435 PubMed DOI
Hinrikson HP, Hurst SF, De Aguirre L, Morrison CJ. 2005. Molecular methods for the identification of Aspergillus species. Med Mycol 43 Suppl 1:S129–37. doi:10.1080/13693780500064722 PubMed DOI
Gautier M, Normand A-C, Ranque S. 2016. Previously unknown species of Aspergillus. Clin Microbiol Infect 22:662–669. doi:10.1016/j.cmi.2016.05.013 PubMed DOI
Cho S-Y, Lee D-G, Kim W-B, Chun H-S, Park C, Myong J-P, Park Y-J, Choi J-K, Lee H-J, Kim S-H, Park SH, Choi S-M, Choi J-H, Yoo J-H. 2019. Epidemiology and antifungal susceptibility profile of Aspergillus species: comparison between environmental and clinical isolates from patients with hematologic malignancies. J Clin Microbiol 57:e02023-18. doi:10.1128/JCM.02023-18 PubMed DOI PMC
Balajee SA, Houbraken J, Verweij PE, Hong S-B, Yaghuchi T, Varga J, Samson RA. 2007. Aspergillus species identification in the clinical setting. Stud Mycol 59:39–46. doi:10.3114/sim.2007.59.05 PubMed DOI PMC
Alastruey-Izquierdo A, Alcazar-Fuoli L, Cuenca-Estrella M. 2014. Antifungal susceptibility profile of cryptic species of Aspergillus. Mycopathologia 178:427–433. doi:10.1007/s11046-014-9775-z PubMed DOI
Nedel WL, Pasqualotto AC. 2014. Treatment of infections by cryptic Aspergillus species. Mycopathologia 178:441–445. doi:10.1007/s11046-014-9811-z PubMed DOI
Thompson GR, Young J-AH. 2021. Aspergillus infections. N Engl J Med 385:1496–1509. doi:10.1056/NEJMra2027424 PubMed DOI
Houbraken J, Kocsubé S, Visagie CM, Yilmaz N, Wang X-C, Meijer M, Kraak B, Hubka V, Bensch K, Samson RA, Frisvad JC. 2020. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol 95:5–169. doi:10.1016/j.simyco.2020.05.002 PubMed DOI PMC
Stemler J, Többen C, Lass-Flörl C, Steinmann J, Ackermann K, Rath P-M, Simon M, Cornely OA, Koehler P. 2023. Diagnosis and treatment of invasive aspergillosis caused by non-fumigatus Aspergillus spp. J Fungi (Basel) 9:500. doi:10.3390/jof9040500 PubMed DOI PMC
Vahedi Shahandashti R, Lass-Flörl C. 2019. Antifungal resistance in Aspergillus terreus: a current scenario. Fungal Genet Biol 131:103247. doi:10.1016/j.fgb.2019.103247 PubMed DOI
Lass-Flörl C, Griff K, Mayr A, Petzer A, Gastl G, Bonatti H, Freund M, Kropshofer G, Dierich MP, Nachbaur D. 2005. Epidemiology and outcome of infections due to Aspergillus terreus: 10-year single centre experience. Br J Haematol 131:201–207. doi:10.1111/j.1365-2141.2005.05763.x PubMed DOI
Steinbach WJ, Perfect JR, Schell WA, Walsh TJ, Benjamin DK. 2004. In vitro analyses, animal models, and 60 clinical cases of invasive Aspergillus terreus infection. Antimicrob Agents Chemother 48:3217–3225. doi:10.1128/AAC.48.9.3217-3225.2004 PubMed DOI PMC
Fernandez-Pittol M, Alejo-Cancho I, Rubio-García E, Cardozo C, Puerta-Alcalde P, Moreno-García E, Garcia-Pouton N, Garrido M, Villanueva M, Alastruey-Izquierdo A, Pitart C, Garcia-Vidal C, Marco F. 2022. Aspergillosis by cryptic Aspergillus species: a case series and review of the literature. Rev Iberoam Micol 39:44–49. doi:10.1016/j.riam.2022.04.002 PubMed DOI
Alastruey-Izquierdo A, Alcazar-Fuoli L, Rivero-Menéndez O, Ayats J, Castro C, García-Rodríguez J, Goterris-Bonet L, Ibáñez-Martínez E, Linares-Sicilia MJ, Martin-Gomez MT, Martín-Mazuelos E, Pelaez T, Peman J, Rezusta A, Rojo S, Tejero R, Anza DV, Viñuelas J, Zapico MS, Cuenca-Estrella M, the FILPOP2 Project from GEMICOMED (SEIMC) and REIPI . 2018. Molecular identification and susceptibility testing of molds isolated in a prospective surveillance of triazole resistance in Spain (FILPOP2 Study). Antimicrob Agents Chemother 62:e00358-18. doi:10.1128/AAC.00358-18 PubMed DOI PMC
Tsang C-C, Tang JYM, Ye H, Xing F, Lo SKF, Xiao C, Han L, Wu AKL, Ngan AHY, Law K-C, To Y-N, Sze DTT, Chim OHY, Hui TWS, Leung CWH, Zhu T, Yao C, Tse BPH, Lau SKP, Woo PCY. 2020. Rare/cryptic Aspergillus species infections and importance of antifungal susceptibility testing. Mycoses 63:1283–1298. doi:10.1111/myc.13158 PubMed DOI
Won EJ, Shin JH, Kim SH, Choi MJ, Byun SA, Kim M-N, Lee W-G, Lee K, Uh Y, Shin MG, Suh SP. 2018. Antifungal susceptibilities to amphotericin B, triazoles and echinocandins of 77 clinical isolates of cryptic Aspergillus species in multicenter surveillance in Korea. Med Mycol 56:501–505. doi:10.1093/mmy/myx067 PubMed DOI
Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW. 2011. Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrob Agents Chemother 55:4802–4809. doi:10.1128/AAC.00304-11 PubMed DOI PMC
Vahedi-Shahandashti R, Houbraken J, Birch M, Lass-Flörl C. 2023. Novel antifungals and Aspergillus section terrei with potpourri susceptibility profiles to conventional antifungals. JoF 9:649. doi:10.3390/jof9060649 PubMed DOI PMC
Takeda K, Suzuki J, Watanabe A, Sekiguchi R, Sano T, Watanabe M, Narumoto O, Kawashima M, Fukami T, Sasaki Y, Tamura A, Nagai H, Matsui H, Kamei K. 2022. The accuracy and clinical impact of the morphological identification of Aspergillus species in the age of cryptic species: a single-centre study. Mycoses 65:164–170. doi:10.1111/myc.13397 PubMed DOI
Howard SJ. 2014. Multi-resistant aspergillosis due to cryptic species. Mycopathologia 178:435–439. doi:10.1007/s11046-014-9774-0 PubMed DOI
Imbert S, Cassaing S, Bonnal C, Normand A-C, Gabriel F, Costa D, Blaize M, Lachaud L, Hasseine L, Kristensen L, Guitard J, Schuttler C, Raberin H, Brun S, Hendrickx M, Piarroux R, Fekkar A. 2021. Invasive aspergillosis due to Aspergillus cryptic species: a prospective multicentre study. Mycoses 64:1346–1353. doi:10.1111/myc.13348 PubMed DOI
Risslegger B, Zoran T, Lackner M, Aigner M, Sánchez-Reus F, Rezusta A, Chowdhary A, Taj-Aldeen SJ, Arendrup MC, Oliveri S, et al. . 2017. A prospective international Aspergillus terreus survey: an EFISG, ISHAM and ECMM joint study. Clin Microbiol Infect 23:776. doi:10.1016/j.cmi.2017.04.012 PubMed DOI
Imbert S, Normand AC, Ranque S, Costa JM, Guitard J, Accoceberry I, Bonnal C, Fekkar A, Bourgeois N, Houzé S, Hennequin C, Piarroux R, Dannaoui E, Botterel F. 2018. Species identification and in vitro antifungal susceptibility of Aspergillus terreus species complex clinical isolates from a french multicenter study. Antimicrob Agents Chemother 62:e02315-17. doi:10.1128/AAC.02315-17 PubMed DOI PMC
Dietl A-M, Vahedi-Shahandashti R, Kandelbauer C, Kraak B, Lackner M, Houbraken J, Lass-Flörl C. 2021. The environmental spread of Aspergillus terreus in Tyrol, Austria. Microorganisms 9:539. doi:10.3390/microorganisms9030539 PubMed DOI PMC
Steixner S, Vahedi Shahandashti R, Siller A, Ulmer H, Reider N, Schennach H, Lass-Flörl C. 2023. Aspergillus terreus antibody serosurveillance in tyrol: a population-based, cross-sectional study of a healthy population. JoF 9:1008. doi:10.3390/jof9101008 PubMed DOI PMC
Perfect JR. 2017. The antifungal pipeline: a reality check. Nat Rev Drug Discov 16:603–616. doi:10.1038/nrd.2017.46 PubMed DOI PMC
Vahedi-Shahandashti R, Lass-Flörl C. 2020. Novel antifungal agents and their activity against Aspergillus species. JoF 6:213. doi:10.3390/jof6040213 PubMed DOI PMC
Berkow EL, Lockhart SR, Ostrosky-Zeichner L. 2020. Antifungal susceptibility testing: current approaches. Clin Microbiol Rev 33:e00069–19. doi:10.1128/CMR.00069-19 PubMed DOI PMC
Vahedi-Shahandashti R, Hahn L, Houbraken J, Lass-Flörl C. 2023. Aspergillus section terrei and antifungals: from broth to agar-based susceptibility testing methods. JoF 9:306. doi:10.3390/jof9030306 PubMed DOI PMC
Auberger J, Lass-Flörl C, Clausen J, Bellmann R, Buzina W, Gastl G, Nachbaur D. 2008. First case of breakthrough pulmonary Aspergillus niveus infection in a patient after allogeneic hematopoietic stem cell transplantation. Diagn Microbiol Infect Dis 62:336–339. doi:10.1016/j.diagmicrobio.2008.06.012 PubMed DOI
Binder U, Maurer E, Lass-Flörl C. 2016. Galleria mellonella: an invertebrate model to study pathogenicity in correctly defined fungal species. Fungal Biol 120:288–295. doi:10.1016/j.funbio.2015.06.002 PubMed DOI
Vahedi-Shahandashti R, Dietl A-M, Binder U, Nagl M, Würzner R, Lass-Flörl C. 2022. Aspergillus terreus and the interplay with Amphotericin B: from resistance to tolerance? Antimicrob Agents Chemother 66:e0227421. doi:10.1128/aac.02274-21 PubMed DOI PMC
Djenontin E, Debourgogne A, Mousavi B, Delhaes L, Cornet M, Valsecchi I, Adebo M, Guillot J, Botterel F, Dannaoui E. 2024. Azole resistance in Aspergillus flavus and associated fitness cost. Mycoses 67:e13766. doi:10.1111/myc.13766 PubMed DOI
Lackner M, Obermair J, Naschberger V, Raschbichler L-M, Kandelbauer C, Pallua J, Metzlaff J, Furxer S, Lass-Flörl C, Binder U. 2019. Cryptic species of Aspergillus section Terrei display essential physiological features to cause infection and are similar in their virulence potential in Galleria mellonella. Virulence 10:542–554. doi:10.1080/21505594.2019.1614382 PubMed DOI PMC
Giammarino A, Bellucci N, Angiolella L. 2024. Galleria mellonella as a model for the study of fungal pathogens: advantages and disadvantages. Pathogens 13:233. doi:10.3390/pathogens13030233 PubMed DOI PMC
Serrano I, Verdial C, Tavares L, Oliveira M. 2023. The virtuous Galleria mellonella model for scientific experimentation. Antibiotics (Basel) 12:505. doi:10.3390/antibiotics12030505 PubMed DOI PMC
Villani S, Calcagnile M, Demitri C, Alifano P. 2025. Galleria mellonella (greater wax moth) as a reliable animal model to study the efficacy of nanomaterials in fighting pathogens. Nanomaterials (Basel) 15:67. doi:10.3390/nano15010067 PubMed DOI PMC
Perdoni F, Falleni M, Tosi D, Cirasola D, Romagnoli S, Braidotti P, Clementi E, Bulfamante G, Borghi E. 2014. A histological procedure to study fungal infection in the wax moth Galleria mellonella. Eur J Histochem 58:2428. doi:10.4081/ejh.2014.2428 PubMed DOI PMC
Glampedakis E, Coste AT, Aruanno M, Bachmann D, Delarze E, Erard V, Lamoth F. 2018. Efficacy of antifungal monotherapies and combinations against Aspergillus calidoustus. Antimicrob Agents Chemother 62:e01137-18. doi:10.1128/AAC.01137-18 PubMed DOI PMC
Zhang L-J, Wang X-D, Ji M-S, Hasimu H, Abliz P. 2021. Characterisation of a clinical isolated Aspergillus lentulus strain using a Galleria mellonella infection model. J Thorac Dis 13:803–811. doi:10.21037/jtd-20-961 PubMed DOI PMC
Forgács L, Borman AM, Kovács R, Balázsi D, Tóth Z, Balázs B, Chun-Ju C, Kardos G, Kovacs I, Majoros L. 2022. In vivo efficacy of amphotericin B against four Candida auris clades. JoF 8:499. doi:10.3390/jof8050499 PubMed DOI PMC
Shi D, Yang Z, Liao W, Liu C, Zhao L, Su H, Wang X, Mei H, Chen M, Song Y, de Hoog S, Deng S. 2024. Galleria mellonella in vitro model for chromoblastomycosis shows large differences in virulence between isolates. IMA Fungus 15:5. doi:10.1186/s43008-023-00134-5 PubMed DOI PMC
Min K, Neiman AM, Konopka JB. 2020. Fungal pathogens: shape-shifting invaders. Trends Microbiol 28:922–933. doi:10.1016/j.tim.2020.05.001 PubMed DOI PMC
Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J. 2020. EUCAST DEFINITIVE DOCUMENT E.DEF 9.1: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. Clin Microbiol Infect 9:1–23.
Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, Yilmaz N, Gené J, Cano J, Chen AJ, Nováková A, Yaguchi T, Kolařík M, Hubka V. 2022. Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Stud Mycol 102:53–93. doi:10.3114/sim.2022.102.02 PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. doi:10.1093/molbev/msaa015 PubMed DOI PMC
Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245. doi:10.1093/nar/gkw290 PubMed DOI PMC