Strategies for labelling of exogenous and endogenous extracellular vesicles and their application for in vitro and in vivo functional studies
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
20-18889S
Grantová Agentura České Republiky
20-18889S
Grantová Agentura České Republiky
20-18889S
Grantová Agentura České Republiky
20-18889S
Grantová Agentura České Republiky
20-18889S
Grantová Agentura České Republiky
20-18889S
Grantová Agentura České Republiky
PubMed
38461237
PubMed Central
PMC10924393
DOI
10.1186/s12964-024-01548-3
PII: 10.1186/s12964-024-01548-3
Knihovny.cz E-zdroje
- Klíčová slova
- Bioluminescent labelling, CRISPR-Cas, Cre-loxP, EV tracking, Exosomes, Extracellular vesicles, Fluorescent labelling, In vivo imaging, Magnetic resonance, Radiolabelling,
- MeSH
- extracelulární vezikuly * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
This review presents a comprehensive overview of labelling strategies for endogenous and exogenous extracellular vesicles, that can be utilised both in vitro and in vivo. It covers a broad spectrum of approaches, including fluorescent and bioluminescent labelling, and provides an analysis of their applications, strengths, and limitations. Furthermore, this article presents techniques that use radioactive tracers and contrast agents with the ability to track EVs both spatially and temporally. Emphasis is also placed on endogenous labelling mechanisms, represented by Cre-lox and CRISPR-Cas systems, which are powerful and flexible tools for real-time EV monitoring or tracking their fate in target cells. By summarizing the latest developments across these diverse labelling techniques, this review provides researchers with a reference to select the most appropriate labelling method for their EV based research.
Zobrazit více v PubMed
van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23:369–382. doi: 10.1038/s41580-022-00460-3. PubMed DOI
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750. PubMed DOI PMC
Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404. doi: 10.1002/jev2.12404. PubMed DOI PMC
Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of Exosome Composition. Cell. 2019;177:428–445.e18. doi: 10.1016/j.cell.2019.02.029. PubMed DOI PMC
Hagiwara K, Ochiya T, Kosaka N. A paradigm shift for extracellular vesicles as small RNA carriers: From cellular waste elimination to therapeutic applications. Drug Deliv Transl Res. 2014;4:31–37. doi: 10.1007/s13346-013-0180-9. PubMed DOI PMC
Abdouh M, Floris M, Gao ZH, Arena V, Arena M, Arena GO. Colorectal cancer-derived extracellular vesicles induce transformation of fibroblasts into colon carcinoma cells. J Exp Clin Cancer Res. 2019;38:1–22. doi: 10.1186/s13046-019-1248-2. PubMed DOI PMC
Elashiry M, Elashiry MM, Elsayed R, Rajendran M, Auersvald C, Zeitoun R, et al. Dendritic cell derived exosomes loaded with immunoregulatory cargo reprogram local immune responses and inhibit degenerative bone disease in vivo. J Extracell vesicles. 2020;9:1795362. doi: 10.1080/20013078.2020.1795362. PubMed DOI PMC
Ridder K, Sevko A, Heide J, Dams M, Rupp AK, Macas J, et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology. 2015;4:1–8. doi: 10.1080/2162402X.2015.1008371. PubMed DOI PMC
Taverna S, Pucci M, Giallombardo M, Di Bella MA, Santarpia M, Reclusa P, et al. Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Sci Rep. 2017;7:1–14. doi: 10.1038/s41598-017-03460-y. PubMed DOI PMC
Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, Drago D, et al. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell. 2014;56:193–204. doi: 10.1016/j.molcel.2014.08.020. PubMed DOI PMC
Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164:1226–1232. doi: 10.1016/j.cell.2016.01.043. PubMed DOI
Li YJ, Wu JY, Wang JM, Hu XB, Xiang DX. Emerging strategies for labeling and tracking of extracellular vesicles. J Control Release. 2020;328:141–59. doi: 10.1016/j.jconrel.2020.08.056. PubMed DOI
Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015;6:1–12. doi: 10.1038/ncomms8029. PubMed DOI PMC
Lázaro-Ibánez E, Al-Jamal KT, Dekker N, Faruqu FN, Saleh AF, Silva AM, et al. Selection of fluorescent, bioluminescent, and radioactive tracers to accurately reflect extracellular vesicle biodistribution in vivo. ACS Nano. 2021;15:3212–3227. doi: 10.1021/acsnano.0c09873. PubMed DOI PMC
Banfai K, Garai K, Ernszt D, Pongracz JE, Kvell K. Transgenic exosomes for thymus regeneration. Front Immunol. 2019;10:1–9. doi: 10.3389/fimmu.2019.00862. PubMed DOI PMC
Naseri Z, Oskuee RK, Jaafari MR, Moghadam MF. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine. 2018;13:7727–7747. doi: 10.2147/IJN.S182384. PubMed DOI PMC
Grange C, Tapparo M, Bruno S, Chatterjee D, Quesenberry PJ, Tetta C, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med. 2014;33:1055–1063. doi: 10.3892/ijmm.2014.1663. PubMed DOI PMC
Nicola AM, Frases S, Casadevall A. Lipophilic dye staining of cryptococcus neoformans extracellular vesicles and capsule. Eukaryot Cell. 2009;8:1373–1380. doi: 10.1128/EC.00044-09. PubMed DOI PMC
Reclusa P, Verstraelen P, Taverna S, Gunasekaran M, Pucci M, Pintelon I, et al. Improving extracellular vesicles visualization: From static to motion. Sci Rep. 2020;10:1–9. doi: 10.1038/s41598-020-62920-0. PubMed DOI PMC
Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. J Biomed Opt. 2001;6:432. doi: 10.1117/1.1413210. PubMed DOI
Monici M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev. 2005;11:227–256. doi: 10.1016/S1387-2656(05)11007-2. PubMed DOI
Karasev MM, Stepanenko OV, Rumyantsev KA, Turoverov KK, Verkhusha VV. Near-infrared fluorescent proteins and their applications. Biochem. 2019;84:32–50. PubMed
Hong G, Antaris AL, Dai H. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1:0010. doi: 10.1038/s41551-016-0010. DOI
Rautaniemi K, Zini J, Löfman E, Saari H, Haapalehto I, Laukka J, et al. Addressing challenges in the removal of unbound dye from passively labelled extracellular vesicles. Nanoscale Adv. 2022;4:226–240. doi: 10.1039/D1NA00755F. PubMed DOI PMC
Pužar Dominkuš P, Stenovec M, Sitar S, Lasič E, Zorec R, Plemenitaš A, et al. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim Biophys Acta - Biomembr. 2018;1860:1350–1361. doi: 10.1016/j.bbamem.2018.03.013. PubMed DOI
Takov K, Yellon DM, Davidson SM. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles. 2017;6:1–15. doi: 10.1080/20013078.2017.1388731. PubMed DOI PMC
Collot M, Ashokkumar P, Anton H, Boutant E, Faklaris O, Galli T, et al. MemBright: a family of fluorescent membrane probes for advanced cellular imaging and neuroscience. Cell Chem Biol. 2019;26:600–614.e7. doi: 10.1016/j.chembiol.2019.01.009. PubMed DOI
Loconte L, Arguedas D, El R, Zhou A, Chipont A, Guyonnet L, et al. Detection of the interactions of tumour derived extracellular vesicles with immune cells is dependent on EV-labelling methods. J Extracell Vesicles. 2023;12:12384. doi: 10.1002/jev2.12384. PubMed DOI PMC
González MI, González-Arjona M, Santos-Coquillat A, Vaquero J, Vázquez-Ogando E, de Molina A, et al. Covalently labeled fluorescent exosomes for in vitro and in vivo applications. Biomedicines. 2021;9:81. doi: 10.3390/biomedicines9010081. PubMed DOI PMC
Boysen AT, Whitehead B, Stensballe A, Carnerup A, Nylander T, Nejsum P. Fluorescent labeling of helminth extracellular vesicles using an in vivo whole organism approach. Biomedicines. 2020;8:213. doi: 10.3390/biomedicines8070213. PubMed DOI PMC
Gangadaran P, Hong CM, Ahn BC. An update on in vivo imaging of extracellular vesicles as drug delivery vehicles. Front Pharmacol. 2018;9:1–14. doi: 10.3389/fphar.2018.00169. PubMed DOI PMC
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D’Angelo G, et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods. 2021;18:1013–1026. doi: 10.1038/s41592-021-01206-3. PubMed DOI PMC
Thorne N, Inglese J, Auld DS. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol. 2010;17:646–657. doi: 10.1016/j.chembiol.2010.05.012. PubMed DOI PMC
Yeh HW, Xiong Y, Wu T, Chen M, Ji A, Li X, et al. ATP-independent bioluminescent reporter variants to improve in vivo imaging. ACS Chem Biol. 2019;14:959–965. doi: 10.1021/acschembio.9b00150. PubMed DOI PMC
Berger F, Paulmurugan R, Bhaumik S, Gambhir SS. Uptake kinetics and biodistribution of 14C-d-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: Impact on bioluminescence based reporter gene imaging. Eur J Nucl Med Mol Imaging. 2008;35:2275–2285. doi: 10.1007/s00259-008-0870-6. PubMed DOI PMC
Iwano S, Sugiyama M, Hama H, Watakabe A, Hasegawa N, Kuchimaru T, et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science. 2018;359:935–939. doi: 10.1126/science.aaq1067. PubMed DOI
Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y. Rational design and development of near-infrared-emitting firefly luciferins available in vivo. Angew Chemie - Int Ed. 2013;52:1175–1179. doi: 10.1002/anie.201205151. PubMed DOI
Harwood KR, Mofford DM, Reddy GR, Miller SC. Identification of mutant firefly luciferases that efficiently utilize aminoluciferins. Chem Biol. 2011;18:1649–1657. doi: 10.1016/j.chembiol.2011.09.019. PubMed DOI PMC
Imai T, Takahashi Y, Nishikawa M, Kato K, Morishita M, Yamashita T, et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J Extracell Vesicles. 2015;4:1–8. doi: 10.3402/jev.v4.26238. PubMed DOI PMC
Gupta D, Liang X, Pavlova S, Wiklander OPB, Corso G, Zhao Y, et al. Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging. J Extracell vesicles. 2020;9:1800222. doi: 10.1080/20013078.2020.1800222. PubMed DOI PMC
Hikita T, Miyata M, Watanabe R, Oneyama C. In vivo imaging of long-term accumulation of cancer-derived exosomes using a BRET-based reporter. Sci Rep. 2020;10:1–10. doi: 10.1038/s41598-020-73580-5. PubMed DOI PMC
Wu AYT, Sung YC, Chen YJ, Chou STY, Guo V, Chien JCY, et al. Multiresolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism. Adv Sci. 2020;7:1–18. doi: 10.1002/advs.202001467. PubMed DOI PMC
Perez GI, Broadbent D, Zarea AA, Dolgikh B, Bernard MP, Withrow A, et al. In vitro and in vivo analysis of extracellular vesicle-mediated metastasis using a bright Red-Shifted Bioluminescent Reporter Protein. Adv Genet. 2022;3:2100055. doi: 10.1002/ggn2.202100055. PubMed DOI PMC
Chu J, Oh Y, Sens A, Ataie N, Dana H, Macklin JJ, et al. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat Biotechnol. 2016;34:760–767. doi: 10.1038/nbt.3550. PubMed DOI PMC
Almeida S, Santos L, Falcão A, Gomes C, Abrunhosa A. In vivo tracking of extracellular vesicles by nuclear imaging: Advances in radiolabeling strategies. Int J Mol Sci. 2020;21:1–13. doi: 10.3390/ijms21249443. PubMed DOI PMC
Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EKJ. Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev. 2011;63:547–554. doi: 10.1016/j.addr.2010.09.015. PubMed DOI
Khan AA, De Rosales RTM. Radiolabelling of extracellular vesicles for PET and SPECT imaging. Nanotheranostics. 2021;5:256–274. doi: 10.7150/ntno.51676. PubMed DOI PMC
Faruqu FN, Wang JTW, Xu L, McNickle L, Chong EMY, Walters A, et al. Membrane radiolabelling of exosomes for comparative biodistribution analysis in immunocompetent and immunodeficient mice – A novel and universal approach. Theranostics. 2019;9:1666–1682. doi: 10.7150/thno.27891. PubMed DOI PMC
Varga Z, Gyurkó I, Pálóczi K, Buzás EI, Horváth I, Hegedus N, et al. Radiolabeling of extracellular vesicles with 99mTc for quantitative in vivo imaging studies. Cancer Biother Radiopharm. 2016;31:168–173. PubMed
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, et al. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials. 2018;179:209–245. doi: 10.1016/j.biomaterials.2018.06.021. PubMed DOI
Royo F, Cossío U, Ruiz De Angulo A, Llop J, Falcon-Perez JM. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Nanoscale. 2019;11:1531–7. doi: 10.1039/C8NR03900C. PubMed DOI
Shi S, Li T, Wen X, Wu SY, Xiong C, Zhao J, et al. Copper-64 labeled PEGylated exosomes for in vivo positron emission tomography and enhanced tumor retention. Bioconjug Chem. 2019;30:2675–83. doi: 10.1021/acs.bioconjchem.9b00587. PubMed DOI PMC
Molavipordanjani S, Khodashenas S, Abedi SM, Moghadam MF, Mardanshahi A, Hosseinimehr SJ. 99mTc-radiolabeled HER2 targeted exosome for tumor imaging. Eur J Pharm Sci. 2020;148:105312. doi: 10.1016/j.ejps.2020.105312. PubMed DOI
Britton MM. Magnetic resonance imaging of chemistry. Chem Soc Rev. 2010;39:4036–4043. doi: 10.1039/b908397a. PubMed DOI
Yokoo T, Bae WC, Hamilton G, Karimi A, Borgstede JP, Bowen BC, et al. A quantitative approach to sequence and image weighting. J Comput Assist Tomogr. 2010;34:317–331. doi: 10.1097/RCT.0b013e3181d3449a. PubMed DOI
Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn Reson Med. 2015;74:266–271. doi: 10.1002/mrm.25376. PubMed DOI PMC
Han Z, Liu S, Pei Y, Ding Z, Li Y, Wang X, et al. Highly efficient magnetic labelling allows MRI tracking of the homing of stem cell-derived extracellular vesicles following systemic delivery. J Extracell Vesicles. 2021;10:e12054. doi: 10.1002/jev2.12054. PubMed DOI PMC
Busato A, Bonafede R, Bontempi P, Scambi I, Schiaffino L, Benati D, et al. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: A new method to obtain labeled exosomes. Int J Nanomedicine. 2016;11:2481–2490. PubMed PMC
Shaikh S, Rehman FU, Du T, Jiang H, Yin L, Wang X, et al. Real-time multimodal bioimaging of cancer cells and exosomes through biosynthesized iridium and iron nanoclusters. ACS Appl Mater Interfaces. 2018;10:26056–26063. doi: 10.1021/acsami.8b08975. PubMed DOI
Sancho-Albero M, Ayaz N, Sebastian V, Chirizzi C, Encinas-Gimenez M, Neri G, et al. Superfluorinated extracellular vesicles for in vivo imaging by 19 F-MRI. ACS Appl Mater Interfaces. 2023;15:8974–8985. doi: 10.1021/acsami.2c20566. PubMed DOI PMC
Hwang DW, Choi H, Jang SC, Yoo MY, Park JY, Choi NE, et al. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 99m Tc-HMPAO. Sci Rep. 2015;5:1–10. doi: 10.1038/srep15636. PubMed DOI PMC
Choi H, Kim MY, Kim DH, Yun H, Oh BK, Kim SB, et al. Quantitative biodistribution and pharmacokinetics study of GMP-grade exosomes labeled with89Zr radioisotope in mice and rats. Pharmaceutics. 2022;14:1–19. doi: 10.3390/pharmaceutics14061118. PubMed DOI PMC
Cohen O, Betzer O, Elmaliach-Pnini N, Motiei M, Sadan T, Cohen-Berkman M, et al. “Golden” exosomes as delivery vehicles to target tumors and overcome intratumoral barriers: In vivo tracking in a model for head and neck cancer. Biomater Sci. 2021;9:2103–2114. doi: 10.1039/D0BM01735C. PubMed DOI
Lara P, Palma-Florez S, Salas-Huenuleo E, Polakovicova I, Guerrero S, Lobos-Gonzalez L, et al. Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors. J Nanobiotechnology. 2020;18:1–17. doi: 10.1186/s12951-020-0573-0. PubMed DOI PMC
Arifin DR, Witwer KW, Bulte JWM. Non-Invasive imaging of extracellular vesicles: Quo vaditis in vivo? J Extracell vesicles. 2022;11:e12241. doi: 10.1002/jev2.12241. PubMed DOI PMC
Zomer A, Steenbeek SC, Maynard C, Van Rheenen J. Studying extracellular vesicle transfer by a Cre-loxP method. Nat Protoc. 2016;11:87–101. doi: 10.1038/nprot.2015.138. PubMed DOI
Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161:1046–1057. doi: 10.1016/j.cell.2015.04.042. PubMed DOI PMC
Luo W, Dai Y, Chen Z, Yue X, Andrade-Powell KC, Chang J. Spatial and temporal tracking of cardiac exosomes in mouse using a nano-luciferase-CD63 fusion protein. Commun Biol. 2020;3:1–9. doi: 10.1038/s42003-020-0830-7. PubMed DOI PMC
Horodecka K, Düchler M. CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles. Int J Mol Sci. 2021;22:6072. doi: 10.3390/ijms22116072. PubMed DOI PMC
de Jong OG, Murphy DE, Mäger I, Willms E, Garcia-Guerra A, Gitz-Francois JJ, et al. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nat Commun. 2020;11:1–13. PubMed PMC
Ye Y, Shi Q, Yang T, Xie F, Zhang X, Xu B, et al. In vivo visualized tracking of tumor-derived extracellular vesicles using CRISPR-Cas9 system. Technol Cancer Res Treat. 2022;21:153303382210853. doi: 10.1177/15330338221085370. PubMed DOI PMC
Han C, Qin G. Reporter systems for assessments of extracellular vesicle transfer. Front Cardiovasc Med. 2022;9:1–6. doi: 10.3389/fcvm.2022.922420. PubMed DOI PMC
Verweij FJ, Revenu C, Arras G, Dingli F, Loew D, Pegtel DM, et al. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev Cell. 2019;48:573–589.e4. doi: 10.1016/j.devcel.2019.01.004. PubMed DOI
Scott A, Sueiro Ballesteros L, Bradshaw M, Tsuji C, Power A, Lorriman J, et al. In Vivo characterization of endogenous cardiovascular extracellular vesicles in larval and adult zebrafish. Arterioscler Thromb Vasc Biol. 2021;41:2454–2468. doi: 10.1161/ATVBAHA.121.316539. PubMed DOI PMC
Blavier L, Nakata R, Neviani P, Sharma K, Shimada H, Benedicto A, et al. The capture of extracellular vesicles endogenously released by xenotransplanted tumours induces an inflammatory reaction in the premetastatic niche. J Extracell Vesicles. 2023;12:12326. doi: 10.1002/jev2.12326. PubMed DOI PMC