A Second Fungal Outbreak in Castañar Cave, Spain, Discloses the Fragility of Subsurface Ecosystems
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PID2019-110603RB-I00
Ministerio de Ciencia e Innovación
PID2020-114978GB-I00
Ministerio de Ciencia e Innovación
PID2019-110603RB-I00
Ministerio de Ciencia e Innovación
PID2019-110603RB-I00
Ministerio de Ciencia e Innovación
PID2020-114978GB-I00
Ministerio de Ciencia e Innovación
PID2019-110603RB-I00
Ministerio de Ciencia e Innovación
PubMed
38507071
PubMed Central
PMC10954929
DOI
10.1007/s00248-024-02367-2
PII: 10.1007/s00248-024-02367-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cephalotrichum microsporum, Neocosmospora solani, Anthropogenic disturbances, Cave works, Ecological changes, Natural heritage,
- MeSH
- ekosystém * MeSH
- epidemický výskyt choroby MeSH
- houby * genetika MeSH
- jeskyně mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko epidemiologie MeSH
Castañar is a cave with strict visitor control measures since it was open to public visits in 2003. However, in recent years, the cave suffered two fungal outbreaks, the first in 2008 and controlled by cleaning the contaminated sediments and subsequent closure of the cave until 2014. The cave was reopened but limited to a maximum of 450 visitors/year. Despite these restrictions on visit, the cave experienced a second outbreak in 2021, originating from the installation of a steel grating walkway, aiming at protecting the ground sediments from the visitors' footsteps. Here, we conducted an analysis using Next-Generation Sequencing and culture-dependent techniques to investigate the fungal communities related to the second outbreak and compare with those present before the cave suffered the outbreak. The results show that the most abundant fungi involved in the 2021 outbreak were already detected in 2020, and even in 2008 and 2009, although the main species that originating both outbreaks were different, likely due to the different carbon sources introduced into the cave.
Departamento de Biologia y Geologia Universidad de Almeria 04120 Almeria Spain
Instituto de Recursos Naturales y Agrobiologia IRNAS CSIC 41012 Seville Spain
Museo Nacional de Ciencias Naturales MNCN CSIC 28006 Madrid Spain
Zobrazit více v PubMed
Saiz-Jimenez C. Microbiological and environmental issues in show caves. World J Microbiol Biotechnol. 2012;28:2453–2464. doi: 10.1007/s11274-012-1070-x. PubMed DOI
Saiz-Jimenez C. The microbiology of show caves, mines tunnels and tombs: implications for management and conservation. In: Engel AS, editor. Microbial Life of Cave Systems. Berlin: DeGruiter; 2015. pp. 231–261.
Martin-Sanchez P, Miller AZ, Saiz-Jimenez C. Lascaux Cave: an example of fragile ecological balance in subterranean environments. In: Engel AS, editor. Microbial life of cave systems. Berlin: DeGruiter; 2015. pp. 280–301.
Caneva G, Nugari MP, Salvadori O. Biology in the conservation of works of art. Rome: ICCROM; 1991.
Saiz-Jimenez C. Painted materials. In: Mitchell R, McNamara CJ, editors. Cultural heritage microbiology. Washington, DC: ASM Press; 2010. pp. 3–13.
Jurado V, Porca E, Cuezva S, Fernandez-Cortes A, Sanchez-Moral S, Saiz-Jimenez C. Fungal outbreak in a show cave. Sci Total Environ. 2010;408:3632–3638. doi: 10.1016/j.scitotenv.2010.04.057. PubMed DOI
Caneva G, Isola D, Lee HJ, Chung YJ. Biological risk for hypogea: shared data from Etruscan tombs in Italy and ancient tombs of the Baekje Dynasty in Republic of Korea. Appl Sci. 2020;10:6104. doi: 10.3390/app10176104. DOI
Zucconi L, Canini F, Isola D, Caneva G. Fungi affecting wall paintings of historical value: a worldwide meta-analysis of their detected diversity. Appl Sci. 2022;12:2988. doi: 10.3390/app12062988. DOI
Saiz-Jimenez C (2013) Cave conservation: a microbiologist’s perspective. In: Cheeptham N (ed.) Cave Microbiomes: Novel Resour Drug Discov. SpringerBriefs in Microbiology, 1:69–84
Saiz-Jimenez C, Cuezva S, Jurado V, Fernandez-Cortes A, Porca E, Benavente D, et al. Paleolithic art in peril: policy and science collide at Altamira Cave. Science. 2011;334:42–43. doi: 10.1126/science.1206788. PubMed DOI
Martin-Sanchez PM, Nováková A, Bastian F, Alabouvette C, Saiz-Jimenez C. Use of biocides for the control of fungal outbreaks in subterranean environments: the case of the Lascaux Cave in France. Environ Sci Technol. 2012;46:3762–3770. doi: 10.1021/es2040625. PubMed DOI
Cuezva S, Jurado V, Fernandez-Cortes A, Garcia-Anton E, Rogerio-Candelera MA, Ariño X, et al. Scientific data suggest Altamira Cave should remain closed. In: Engel AS, et al., editors. Microbial life of cave systems. Berlin: DeGruiter; 2015. pp. 303–320.
Alonso-Zarza AM, Martin-Perez A. Dolomite in caves: recent dolomite formation in oxic, non-sulfate environments. Castañar Cave. Spain Sediment Geol. 2008;205:160–164. doi: 10.1016/j.sedgeo.2008.02.006. DOI
Alonso-Zarza AM, Martín Pérez A, Martín García R, Gil Peña I, Meléndez Hevia A, Martínez Flores E, Hellstrom J, Muñoz Barco P. Structural and host rock controls on the distribution, morphology and mineralogy of speleothems in the Castañar Cave (Spain) Geol Mag. 2011;148:211–255. doi: 10.1017/S0016756810000506. DOI
Lario J, Sanchez-Moral S, Cuezva S, Taborda M, Soler V. High 222Rn levels in a show cave (Castañar de Ibor, Spain): proposal and application of management measures to minimize the effects on guides and visitors. Atmos Environ. 2006;40:7395–7400. doi: 10.1016/j.atmosenv.2006.06.046. DOI
Martin-Pozas T, Cuezva S, Fernandez-Cortes A, Benavente D, Saiz-Jimenez C, Sanchez-Moral S. Prokaryotic communities inhabiting a high-radon subterranean ecosystem (Castañar Cave, Spain): environmental and substrate-driven controls. Microbiol Res. 2023;277:127511. doi: 10.1016/j.micres.2023.127511. PubMed DOI
Martin-Pozas T, Nováková A, Jurado V, Fernandez-Cortes A, Cuezva S, Saiz-Jimenez C, et al. Diversity of microfungi in a high radon cave ecosystem. Front Microbiol. 2022;13:869661. doi: 10.3389/fmicb.2022.869661. PubMed DOI PMC
Fernandez-Cortes A, Sanchez-Moral S, Cuezva S, Benavente D, Abella R. Characterization of trace gases’ fluctuations on a ‘low energy’ cave (Castañar de Ibor, Spain) using techniques of entropy of curves. Int J Climatol. 2011;31:127–143. doi: 10.1002/joc.2057. DOI
Garrett SD. Soil fungi and soil fertility: an introduction to soil mycology. Oxford: Pergamon Press; 1981.
Frisvad JC, Samson RA. Polyphasic taxonomy of Penicillium subgenus Penicillium: a guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol. 2004;49:1–173.
Atlas RM. Handbook of microbiological media. Boca Raton: CRC Press; 2010.
Sklenář F, Glässnerová K, Jurjević Ž, Houbraken J, Samson RA, Visagie CM, et al. Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Stud Mycol. 2022;102:53–93. doi: 10.3114/sim.2022.102.02. PubMed DOI PMC
Houbraken J, Due M, Varga J, Meijer M, Frisvad JC, Samson RA. Polyphasic taxonomy of Aspergillus section Usti. Stud Mycol. 2007;59:107–128. doi: 10.3114/sim.2007.59.12. PubMed DOI PMC
Samson RA, Varga J, Meijer M, Frisvad JC. New taxa in Aspergillus section Usti. Stud Mycol. 2011;69:81–97. doi: 10.3114/sim.2011.69.06. PubMed DOI PMC
Martin-Pozas T, Sanchez-Moral S, Cuezva S, Jurado V, Saiz-Jimenez C, Perez-Lopez R, et al. Biologically mediated release of endogenous N2O and NO2 gases in a hydrothermal, hypoxic subterranean environment. Sci Total Environ. 2020;747:141218. doi: 10.1016/j.scitotenv.2020.141218. PubMed DOI
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. Reproducible, interactive, scalable, and extensible microbiome data science using QUIIME 2. Nat Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC
Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2 paper supporting information: high-resolution sample inference from amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI
Sandoval-Denis M, Guarro J, Cano-Lira JF, Sutton DA, Wiederhold NP, de Hoog GS, et al. Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Stud Mycol. 2016;83:193–233. doi: 10.1016/j.simyco.2016.07.002. PubMed DOI PMC
Li CH, Cervantes M, Springer DJ, Boekhout T, Ruiz-Vazquez RM, Torres-Martinez, et al. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog. 2011;7(6):e1002086. doi: 10.1371/journal.ppat.1002086. PubMed DOI PMC
Cannon PF, Kirk PM. Fungal families of the world. Wallingford: CABI; 2007.
Sharma L, Oliveira I, Raimundo F, Torres L, Marques G. Soil chemical properties barely perturb the abundance of entomopathogenic Fusarium oxysporum: a case study using a generalized linear mixed model for microbial pathogen occurrence count data. Pathogens. 2018;7:89. doi: 10.3390/pathogens7040089. PubMed DOI PMC
Blachowicz A, Chiang AJ, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich JE, et al. Proteomic and metabolomic characteristics of extremophilic fungi under simulated Mars conditions. Front Microbiol. 2019;10:1013. doi: 10.3389/fmicb.2019.01013. PubMed DOI PMC
Telagathoti A, Probst M, Mandolini E, Peintner U. Mortierellaceae from subalpine and alpine habitats: new species of Entomortierella, Linnemannia, Mortierella, Podila and Tyroliella gen. nov. Stud Mycol. 2022;103:25–58. doi: 10.3114/sim.2022.103.02. PubMed DOI PMC
Biagioli F, Coleine C, Delgado-Baquerizo M, Feng Y, Saiz-Jimenez C, Selbmann L. Outdoor climate drives diversity patterns of dominant microbial taxa in caves worldwide. Sci Total Environ. 2024;906:167674. doi: 10.1016/j.scitotenv.2023.167674. PubMed DOI
Man B, Wang H, Yun Y, Xiang X, Wang R, Duan Y, et al. Diversity of fungal communities in Heshang Cave of Central China revealed by mycobiome-sequencing. Front Microbiol. 2018;9:1400. doi: 10.3389/fmicb.2018.01400. PubMed DOI PMC
Jiang J-R, Cai L, Liu F. Oligotrophic fungi from a carbonate cave, with three new species of Cephalotrichum. Mycology. 2017;8:164–177. doi: 10.1080/21501203.2017.1366370. DOI
Geethanjali PA, Jayashankar M. A review on litter decomposition by soil fungal community. IOSR J Pharm Biol Sci. 2016;11:1–3. doi: 10.9790/3008-1104030103. DOI
Nováková A, Hubka V, Saiz-Jimenez C. Microscopic fungi isolated from cave air and sediments in the Nerja Cave-preliminary results. In: Saiz-Jimenez C, editor. The Conservation of Subterranean Cultural Heritage. Leiden: CRC Press/Balkema; 2014. pp. 239–246.
Zare R, Gams W. A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium. Nova Hedwigia. 2001;73:1–50. doi: 10.1127/nova.hedwigia/73/2001/1. DOI
Zhou YM, Zhi JR, Qu JJ, Zou X. Estimated divergence times of Lecanicillium in the family Cordycipitaceae provide insights into the attribution of Lecanicillium. Front Microbiol. 2022;13:859886. doi: 10.3389/fmicb.2022.859886. PubMed DOI PMC
Sanchez-Moral S, Jurado V, Fernandez-Cortes A, Cuezva S, Martin-Pozas T, Gonzalez-Pimentel JL, et al. Environment-driven control of fungi in subterranean ecosystems: the case of La Garma cave (northern Spain) Int Microbiol. 2021;24:573–591. doi: 10.1007/s10123-021-00193-x. PubMed DOI PMC
Nonaka K, Miyazaki H, Iwatsuki M, Shiomi K, Tomoda H, Omura S, et al. Staphylotrichum boninense, a new hyphomycete (Chaetomiaceae) from soils in the Bonin Islands, Japan. Mycoscience. 2012;53:312–318. doi: 10.1007/s10267-011-0159-7. DOI
Yurkov AM. Yeasts of the soil–obscure but precious. Yeast. 2018;35:369–378. doi: 10.1002/yea.3310. PubMed DOI PMC
Stefani FOP, Bell TH, Marchand C, de la Providencia IE, El Yassimi A, St-Arnaud M, et al. Culture-dependent and –independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS ONE. 2015;10:e0128272. doi: 10.1371/journal.pone.0128272. PubMed DOI PMC
Nováková A. Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. Int J Speleol. 2009;38:71–82. doi: 10.5038/1827-806X.38.1.8. DOI
Su L, Zhu H, Niu Y, Guo Y, Du X, Guo J, Zhang L, Qin C. Phylogeny and taxonomic revision of Kernia and Acaulium. Sci Rep. 2020;10:10302. doi: 10.1038/s41598-020-67347-1. PubMed DOI PMC
Seth HK. The fungus genus Kernia with description of a new species. Acta Bot Neerl. 1968;17:478–482. doi: 10.1111/j.1438-8677.1968.tb00556.x. DOI
Guarro Artigas J. Coprophilous fungi isolated in Catalonia. Ascomycetes An Jard Bot Madr. 1983;39:229–245.
Jurado V, Fernandez-Cortes A, Cuezva S, Laiz L, Cañaveras JC, Sanchez-Moral S, et al. The fungal colonization of rock art caves. Naturwissenschaften. 2009;96:1027–1034. doi: 10.1007/s00114-009-0561-6. PubMed DOI