Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28082760
PubMed Central
PMC5220211
DOI
10.1016/j.simyco.2016.11.006
PII: S0166-0616(16)30020-3
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillago Samson, Houbraken & Frisvad, gen. nov., Aspergillago clavatoflava (Raper & Fennell) Samson, Houbraken & Frisvad, comb. nov., Aspergillus, Aspergillus subgenus Cremei, subgen. nov., Aspergillus subgenus Polypaecilum, subgen. nov., Monophyly, Multigene phylogeny, Nomenclature, Penicilliopsis zonatus (Kwon-Chung & Fennell) Samson, Houbraken & Frisvad, comb. nov., Teleomorphs,
- Publikační typ
- časopisecké články MeSH
Aspergillus is one of the economically most important fungal genera. Recently, the ICN adopted the single name nomenclature which has forced mycologists to choose one name for fungi (e.g. Aspergillus, Fusarium, Penicillium, etc.). Previously two proposals for the single name nomenclature in Aspergillus were presented: one attributes the name "Aspergillus" to clades comprising seven different teleomorphic names, by supporting the monophyly of this genus; the other proposes that Aspergillus is a non-monophyletic genus, by preserving the Aspergillus name only to species belonging to subgenus Circumdati and maintaining the sexual names in the other clades. The aim of our study was to test the monophyly of Aspergilli by two independent phylogenetic analyses using a multilocus phylogenetic approach. One test was run on the publicly available coding regions of six genes (RPB1, RPB2, Tsr1, Cct8, BenA, CaM), using 96 species of Penicillium, Aspergillus and related taxa. Bayesian (MrBayes) and Ultrafast Maximum Likelihood (IQ-Tree) and Rapid Maximum Likelihood (RaxML) analyses gave the same conclusion highly supporting the monophyly of Aspergillus. The other analyses were also performed by using publicly available data of the coding sequences of nine loci (18S rRNA, 5,8S rRNA, 28S rRNA (D1-D2), RPB1, RPB2, CaM, BenA, Tsr1, Cct8) of 204 different species. Both Bayesian (MrBayes) and Maximum Likelihood (RAxML) trees obtained by this second round of independent analyses strongly supported the monophyly of the genus Aspergillus. The stability test also confirmed the robustness of the results obtained. In conclusion, statistical analyses have rejected the hypothesis that the Aspergilli are non-monophyletic, and provided robust arguments that the genus is monophyletic and clearly separated from the monophyletic genus Penicillium. There is no phylogenetic evidence to split Aspergillus into several genera and the name Aspergillus can be used for all the species belonging to Aspergillus i.e. the clade comprising the subgenera Aspergillus, Circumdati, Fumigati, Nidulantes, section Cremei and certain species which were formerly part of the genera Phialosimplex and Polypaecilum. Section Cremei and the clade containing Polypaecilum and Phialosimplex are proposed as new subgenera of Aspergillus. The phylogenetic analysis also clearly shows that Aspergillus clavatoflavus and A. zonatus do not belong to the genus Aspergillus. Aspergillus clavatoflavus is therefore transferred to a new genus Aspergillago as Aspergillago clavatoflavus and A. zonatus was transferred to Penicilliopsis as P. zonata. The subgenera of Aspergillus share similar extrolite profiles indicating that the genus is one large genus from a chemotaxonomical point of view. Morphological and ecophysiological characteristics of the species also strongly indicate that Aspergillus is a polythetic class in phenotypic characters.
CBS KNAW Fungal Biodiversity Centre Utrecht The Netherlands
Department of Biotechnology and Biomedicine Technical University of Denmark Kongens Lyngby Denmark
Department of Botany Charles University Prague Prague Czech Republic
Dept of Microbiology Faculty of Science and Informatics University of Szeged Szeged Hungary
Institute of Sciences of Food Production National Research Council Bari Italy
Zobrazit více v PubMed
Aberer A.J., Krompass D., Stamatakis A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Systematic Biology. 2013;62:162–166. PubMed PMC
Anisimova M., Gil M., Dufayard J.F. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology. 2011;60:685–699. PubMed PMC
Bhat B., Harrison S.M., Lamont H.M. The biosynthesis of the mould metabolites roquefortine and aszonalenin from L-[2,4,5,6,7-2H5]tryptophan. Tetrahedron. 1993;49:10663–10668.
Borchsenius F. FastGap 1.2. Department of Biosciences, Aarhus University, Denmark. 2009. http://www.aubot.dk/FastGap_home.htm Published online at:
Borg I., Groenen P. Springer-Verlag; Heidelberg: 1997. Modern multidimensional scaling.
Chang J.M., Di Tommaso P., Lefort V. TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction. Nucleic Acids Reserch. 2015;43:W3–W6. PubMed PMC
Chernomor O.A., von Haeseler A., Minh B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology. 2016 PubMed PMC
Darriba D., Taboada G.L., Doallo R. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;30:772. PubMed PMC
El Kady I., El Maraghy S., Zsohri A.N. Mycotoxin producing potential of some isolates of Aspergillus flavus and Eurotium groups from meat products. Microbiological Research. 1994;149:297–307. PubMed
Fan Z., Sun Z.-H., Liy Z. Dichotocejpins A-C; new diketopiperazines from a deep-sea derived fungus Dichotomomyces cejpii FS110. Marine Drugs. 2016;14 PubMed PMC
Frisvad J.C., Larsen T.O. Chemodiversity in the genus Aspergillus. Applied Microbiology and Biotechnology. 2015;99:7859–7877. PubMed
Frisvad J.C., Larsen T.O. Extrolites of Aspergillus fumigatus and other pathogenic species in Aspergillus section Fumigati. Frontiers in Microbiology. 2016;6 PubMed PMC
Frisvad J.C., Samson R.A. Emericella venezuelensis, a new species with stellate ascospores producing sterigmatocystin and aflatoxin B1. Systematic and Applied Microbiology. 2004;27:672–680. PubMed
Frisvad J.C., Thrane U. Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone indices and UV–VIS spectra (diode-array detection) Journal of Chromatography. 1987;404:195–214. PubMed
Frisvad J.C., Rank C., Nielsen K.F. Metabolomics of Aspergillus fumigatus. Medical Mycology. 2009;47:S53–S71. PubMed
Greiner K., Peršoh D., Weig A. Phialosimplex salinarum, a new species of Eurotiomycetes from a hypersaline habitat. IMA Fungus. 2014;5:161–172. PubMed PMC
Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology. 2003;52:696–704. PubMed
Guindon S., Dufayard J.F., Lefort V. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology. 2010;59:307–321. PubMed
Harms H., Rempel V., Kehraus S. Indoloterpenes from a marine-derived fungal strain of Dichotomomyces cejpii with antagonistic activity at GRR18 and cannabinoid receptors. Journal of Natural Products. 2014;77:673–677. PubMed
Harms H., Orlikova B., Seungwon J. Epipolythiodiketopiperazines from the marine derived fungus Dichotomomyces cejpii with NF-κB inhibitory potential. Marine Drugs. 2015;13:4949–4966. PubMed PMC
Harms H., Kehraus S., Nesaei-Mosaferan D. Ab-42 lowering agents from the marine-derived fungus Dichotomomyces cejpii. Steroids. 2015;104:182–188. PubMed
Hillis D.M., Heath T.A., St John K. Analysis and visualization of tree space. Systematic Biology. 2005;54:471–482. PubMed
Houbraken J., de Vries R.P., Samson R.A. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in Applied Microbiology. 2014;86:199–249. PubMed
Houbraken J., Samson R.A. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology. 2011;70:1–51. PubMed PMC
Houbraken J., Wang L., Lee H.B. New sections in Penicillium containing novel species producing patulin, pyripyropens or other bioactive compounds. Persoonia: Molecular Phylogeny and Evolution of Fungi. 2015;36:299–314. PubMed PMC
Hsieh H.-M., Ju Y.-M. Penicilliopsis pseudocordyceps, the holomorph of Pseudocordyceps seminicola, and notes on Penicilliopsis clavariaeformis. Mycologia. 2002;94:539–544. PubMed
Hubka V., Nováková A., Kolarík A. Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia. 2014;107:169–208. PubMed
Jesenska Z., Pieckova E., Bernat D. Heat-resistance fungi in the soil. International Journal of Food Microbiology. 1992;16:209–214. PubMed
Jesenska Z., Pieckova E., Bernat D. Heat-resistance of fungi from soil. International Journal of Food Microbiology. 1993;19:187–192. PubMed
Jurjevic Ž., Kubátová A., Kolařík M. Taxonomy of Aspergillus section Petersonii sect. nov. encompassing indoor and soil-borne species with predominant tropical distribution. Plant Systematics and Evolution. 2015;301:2441–2462.
Katsube Y., Kimura Y., Hamasaki T. Structure of aszonapyrojne A monomethyl ether-1, a derivative of aszonapyrone A, produced by Aspergillus zonatus. Agricultural and Biological Chemistry. 1985;49:551–553.
Kepler R.M., Humber R.A., Bischoff J.F. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia. 2014;106:811–829. PubMed
Kimura Y., Hamasaki T., Nakajima H. Structure of aszonalenin, a new metabolite of Aspergillus zonatus. Tetrahedron Letters. 1982;23:225–228.
Kimura Y., Hamasaki T., Isogai A. Structure of aszonapyrone, a new metabolite produced by Aspergillus zonatus. Agricultural and Biological Chemistry. 1982;46:1963–1965.
Kimura Y., Nishibe M., Nakajima H. Emeniveol; a new pollen growth inhibitor from the fungus, Emericella nivea. Tetrahedron Letters. 1992;33:6987–6990.
Kitahara N., Endo A. Xanthocillin X monomethyl ether, a potent inhibitor of prostaglandin biosynthesis. Journal of Antibiotics. 1981;34:1556–1561. PubMed
Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. 2016;33:1870–1874. PubMed PMC
Lanfear R., Calcott B., Ho S.Y. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution. 2012;29:1695–1701. PubMed
Larsen T.O., Smedsgaard J., Nielsen K.F. Production of mycotoxins by Aspergillus lentulus and other medically important and closely related species in section Fumigati. Medical Mycology. 2007;45:225–232. PubMed
Lingoes J.C., Roskam E.E., Borg I. 2nd edn. Mathesis Press; Ann Arbor, Michigan: 1979. Geometric representations of relational data.
Löytynoja A. Phylogeny-aware alignment with PRANK. Methods in Molecular Biology. 2014;1079:155–170. PubMed
Ma Y-M., Liang X-A., Zhang H-C. Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. Journal of Agricultural and Food Chemistry. 2016;64:3789–3793. PubMed
Maddison W.P., Maddison D.R. Mesquite: a modular system for evolutionary analysis. Version 3.10. 2016. http://mesquiteproject.org
McNeill J., Barrie F.R., Buck W.R. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) Regnum Vegetabile. 2012;154:208.
Micheli P.A. Nova plantarum genera; 1729.
Miller M.A., Pfeiffer W., Schwartz T. Gateway Computing Environments Workshop (GCE), IEEE. 2010. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees; pp. 1–8.
Minh B.Q., Nguyen M.A.T., von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. 2013;30:1188–1195. PubMed PMC
Nguyen L.T., Schmidt H.A., von Haeseler A. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution. 2015;32:268–274. PubMed PMC
Nielsen K.F., Månsson M., Rank C. Dereplication of microbial natural products by LC-DAD-TOFMS. Journal of Natural Products. 2011;74:2338–2348. PubMed
Nielsen K.F., Mogensen J.M., Johansen M. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and Bioanalytical Chemistry. 2009;395:1225–1242. PubMed
Nozawa K., Nakajima S., Kawai K. Isolation and structures of indoloditerpenes, possible biosynthetic intermediates to the tremorgenic mycotoxin, paxillin, from Emericella striata. Journal of the Chemical Society Perkin Transactions I. 1988;1988:2607–2610.
Ogata M., Ueda J., Hoshi M. A novel indole-diterpenoid, JBIR-03 with anti-MSRA activity from Dichotomomyces cejpii var. cejpii NBRC 103559. Journal of Antibiotics. 2007;60:645–648. PubMed
Peterson S.W. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia. 2008;100:205–226. PubMed
Peterson S.W., Jurjevic Z., Bills G.F. Genus Hamigera, six new species and multilocus DNA sequence based phylogeny. Mycologia. 2010;102:847–864. PubMed
Piñar G., Dalnodar D., Voiti C. Biodeterioration risk threatens the 3100 year old staircase of Hallstatt (Austria): possible involvement of halophilic microorganisms. PLOS ONE. 2016;11:e0148279. PubMed PMC
Piñar G., Tafer H., Sterflinger K. Amid the possible causes of a very famous foxing: molecular and microscopic insight into Leonardo da Vinci’s self-portrait. Environmental Microbiology Reports. 2015;7:849–859. PubMed PMC
Pitt J.I., Taylor J.W. Aspergillus, its sexual states, and the new International Code of Nomenclature. Mycologia. 2014;106:1051–1052. PubMed
Pitt J.I., Taylor J.W. (2441) Proposal to conserve the name Aspergillus (Fungi: Eurotiales: Trichocomaceae) with a conserved type to maintain also the name Eurotium. Taxon. 2016;65:631–632.
Qiao M.-F., Ji N.-Y., Liu X.-H. Asporyergosterol, a new steroid from an algicolous isolate of Aspergillus oryzae. Natural Products Communications. 2010;5:1575–1578. PubMed
Qiao M.-F., Ji N.-Y., Liu X.-H. Indoloterpenes from an algicolous isolate of Aspergillus oryzae. Bioorganic and Medicinal Chemistry Letters. 2010;20:5677–5680. PubMed
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2016. R: a language and environment for statistical computing.https://www.R-project.org/
Rambaut A., Suchard M.A., Xie D. Tracer v. 1.6. 2014. http://beast.bio.ed.ac.uk/Tracer
Raper K.B., Fennell D.I. Williams & Wilkins; Baltimore: 1965. The genus Aspergillus.
Robinson D.F., Foulds L.R. Comparison of weighted labeled trees. Lecture Notes in Mathematics. 1979;748:119–126.
Robinson D.F., Foulds L.R. Comparison of phylogenetic trees. Mathematical Biosciences. 1981;53:131–147.
Rodrigues B.S.F., Sahm B.D.B., Jimenez P.C. Bioprospection of cytotoxic compounds in fungal strains recovered from sediments of the Brazilian coast. Chemistry & Biodiversity. 2015;12:432–442. PubMed
Ronquist F., Teslenko M., van der Mark P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61:539–542. PubMed PMC
Samson R.A., Houbraken J.A.M.P., Kuijpers A.F.A. New ochratoxin or sclerotium producing species in Aspergillus section Nigri. Studies in Mycology. 2004;50:45–61.
Samson R.A., Seifert K.A. The ascomycete genus Penicilliopsis and its anamorphs. In: Samson R.A., Pitt J.I., editors. Advances in Penicillium and Aspergillus systematic. Plenum Press; New York, USA: 1985. pp. 397–426.
Samson R.A., Visagie C.M., Houbraken J. Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology. 2014;78:141–173. PubMed PMC
Shimodaira H., Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001;17:1246–1247. PubMed
Sigler L., Sutton D.A., Gibas C.F.C. Phialosimplex, a new anamorphic genus associated with infections in dogs and having phylogenetic affinity to the Trichocomaceae. Medical Mycology. 2010;48:335–345. PubMed
Silvestro D., Michalak I. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution. 2012;12:335–337.
Slack G., Puniani E., Frisvad J.C. Secondary metabolites from Eurotium species, A. calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities. Mycological Research. 2009;113:480–490. PubMed
Smedsgaard J. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. Journal of Chromatography A. 1997;760:264–270. PubMed
Smith G. Polypaecilum gen. nov. Transactions of the British Mycological Society. 1961;44:437–440.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. PubMed PMC
Stephens T.G., Bhattacharya D., Ragan M.A. PhySortR: a fast, flexible tool for sorting phylogenetic trees in R. PeerJ. 2016;4:e2038. PubMed PMC
Sukumaran J., Holder M.T. DendroPy: a Python library for phylogenetic computing. Bioinformatics. 2010;26:1569–1571. PubMed
Taylor J.W., Göker M., Pitt J.I. Choosing one name for pleomorphic fungi: the example of Aspergillus versus Eurotium, Neosartorya and Emericella. Taxon. 2016;65:593–601.
Throckmorton K., Wiemann P., Keller N.P. Evolution of chemical diversity in a group of non-reduced polyketide gene clusters: using phylogenetics to inform the search for novel natural products. Toxins. 2015;7:3572–3607. PubMed PMC
Vaidya G., Lohman D.J., Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27:171–180. PubMed
Varga J., Due M., Frisvad J.C. Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Studies in Mycology. 2007;59:89–106. PubMed PMC
Varga J., Frisvad J.C., Samson R.A. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology. 2011;69:57–80. PubMed PMC
Vellinga E.C., Kuyper T.W., Ammirati J. Six simple guidelines for introducing new genera of fungi. IMA Fungus. 2015;6:65–68.
Visagie C.M., Houbraken J., Frisvad J.C. Identification and nomenclature of the genus Penicillium. Studies in Mycology. 2014;78:343–371. PubMed PMC
Wheeler K.A., Hocking A.D. Interactions among xerophilic fungi associated with dried salted fish. Journal of Applied Bacteriology. 1993;74:164–169. PubMed
Wheeler K.A., Hocking A.D., Pitt J.I. Influence of temperature on the water relations on Polypaecilum pisce and Basipetospora halophila, two halophilic fungi. Journal of General Microbiology. 1988;134:2255–2260.
Yilmaz N., Visagie C.M., Houbraken J. Polyphasic taxonomy of the genus. Talaromyces. Studies in Mycology. 2014;78:175–341. PubMed PMC
Young F.W., Hamer R.M. Erlbaum; New York: 1987. Multidimensional scaling: history, theory and applications.
Zhang N., Rossman A.Y., Seifert K. American Phytopathological Society; St. Paul: 2013. Impacts of the International Code of Nomenclature for algae, fungi and plants (Melbourne Code) on the scientific names of plant pathogenic fungi. Online. APSnet Feature.
Zuck K.M., Shipley S., Newman D.J. Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peuceticus. Journal of Natural Products. 2011;74:1653–1657. PubMed
A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species
Reducing the number of accepted species in Aspergillus series Nigri